File size: 12,723 Bytes
935c348 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
from itertools import islice
from typing import Tuple, List, Iterable, Optional, Dict, Callable, Any
from spacy.scorer import PRFScore
from thinc.types import Floats2d
import numpy
from spacy.training.example import Example
from thinc.api import Model, Optimizer
from spacy.tokens.doc import Doc
from spacy.pipeline.trainable_pipe import TrainablePipe
from spacy.vocab import Vocab
from spacy import Language
from thinc.model import set_dropout_rate
from wasabi import Printer
from typing import List, Tuple, Callable
import spacy
from spacy.tokens import Doc, Span
from thinc.types import Floats2d, Ints1d, Ragged, cast
from thinc.api import Model, Linear, chain, Logistic
@spacy.registry.architectures("rel_model.v1")
def create_relation_model(
create_instance_tensor: Model[List[Doc], Floats2d],
classification_layer: Model[Floats2d, Floats2d],
) -> Model[List[Doc], Floats2d]:
with Model.define_operators({">>": chain}):
model = create_instance_tensor >> classification_layer
model.attrs["get_instances"] = create_instance_tensor.attrs["get_instances"]
return model
@spacy.registry.architectures("rel_classification_layer.v1")
def create_classification_layer(
nO: int = None, nI: int = None
) -> Model[Floats2d, Floats2d]:
with Model.define_operators({">>": chain}):
return Linear(nO=nO, nI=nI) >> Logistic()
@spacy.registry.misc("rel_instance_generator.v1")
def create_instances(max_length: int) -> Callable[[Doc], List[Tuple[Span, Span]]]:
def get_instances(doc: Doc) -> List[Tuple[Span, Span]]:
instances = []
for ent1 in doc.ents:
for ent2 in doc.ents:
if ent1 != ent2:
if max_length and abs(ent2.start - ent1.start) <= max_length:
instances.append((ent1, ent2))
return instances
return get_instances
@spacy.registry.architectures("rel_instance_tensor.v1")
def create_tensors(
tok2vec: Model[List[Doc], List[Floats2d]],
pooling: Model[Ragged, Floats2d],
get_instances: Callable[[Doc], List[Tuple[Span, Span]]],
) -> Model[List[Doc], Floats2d]:
return Model(
"instance_tensors",
instance_forward,
layers=[tok2vec, pooling],
refs={"tok2vec": tok2vec, "pooling": pooling},
attrs={"get_instances": get_instances},
init=instance_init,
)
def instance_forward(model: Model[List[Doc], Floats2d], docs: List[Doc], is_train: bool) -> Tuple[Floats2d, Callable]:
pooling = model.get_ref("pooling")
tok2vec = model.get_ref("tok2vec")
get_instances = model.attrs["get_instances"]
all_instances = [get_instances(doc) for doc in docs]
tokvecs, bp_tokvecs = tok2vec(docs, is_train)
ents = []
lengths = []
for doc_nr, (instances, tokvec) in enumerate(zip(all_instances, tokvecs)):
token_indices = []
for instance in instances:
for ent in instance:
token_indices.extend([i for i in range(ent.start, ent.end)])
lengths.append(ent.end - ent.start)
ents.append(tokvec[token_indices])
lengths = cast(Ints1d, model.ops.asarray(lengths, dtype="int32"))
entities = Ragged(model.ops.flatten(ents), lengths)
pooled, bp_pooled = pooling(entities, is_train)
# Reshape so that pairs of rows are concatenated
relations = model.ops.reshape2f(pooled, -1, pooled.shape[1] * 2)
def backprop(d_relations: Floats2d) -> List[Doc]:
d_pooled = model.ops.reshape2f(d_relations, d_relations.shape[0] * 2, -1)
d_ents = bp_pooled(d_pooled).data
d_tokvecs = []
ent_index = 0
for doc_nr, instances in enumerate(all_instances):
shape = tokvecs[doc_nr].shape
d_tokvec = model.ops.alloc2f(*shape)
count_occ = model.ops.alloc2f(*shape)
for instance in instances:
for ent in instance:
d_tokvec[ent.start : ent.end] += d_ents[ent_index]
count_occ[ent.start : ent.end] += 1
ent_index += ent.end - ent.start
d_tokvec /= count_occ + 0.00000000001
d_tokvecs.append(d_tokvec)
d_docs = bp_tokvecs(d_tokvecs)
return d_docs
return relations, backprop
def instance_init(model: Model, X: List[Doc] = None, Y: Floats2d = None) -> Model:
tok2vec = model.get_ref("tok2vec")
if X is not None:
tok2vec.initialize(X)
return model
Doc.set_extension("rel", default={}, force=True)
msg = Printer()
@Language.factory(
"relation_extractor",
requires=["doc.ents", "token.ent_iob", "token.ent_type"],
assigns=["doc._.rel"],
default_score_weights={
"rel_micro_p": None,
"rel_micro_r": None,
"rel_micro_f": None,
},
)
def make_relation_extractor(
nlp: Language, name: str, model: Model, *, threshold: float
):
"""Construct a RelationExtractor component."""
return RelationExtractor(nlp.vocab, model, name, threshold=threshold)
class RelationExtractor(TrainablePipe):
def __init__(
self,
vocab: Vocab,
model: Model,
name: str = "rel",
*,
threshold: float,
) -> None:
"""Initialize a relation extractor."""
self.vocab = vocab
self.model = model
self.name = name
self.cfg = {"labels": [], "threshold": threshold}
@property
def labels(self) -> Tuple[str]:
"""Returns the labels currently added to the component."""
return tuple(self.cfg["labels"])
@property
def threshold(self) -> float:
"""Returns the threshold above which a prediction is seen as 'True'."""
return self.cfg["threshold"]
def add_label(self, label: str) -> int:
"""Add a new label to the pipe."""
if not isinstance(label, str):
raise ValueError("Only strings can be added as labels to the RelationExtractor")
if label in self.labels:
return 0
self.cfg["labels"] = list(self.labels) + [label]
return 1
def __call__(self, doc: Doc) -> Doc:
"""Apply the pipe to a Doc."""
# check that there are actually any candidate instances in this batch of examples
total_instances = len(self.model.attrs["get_instances"](doc))
if total_instances == 0:
msg.info("Could not determine any instances in doc - returning doc as is.")
return doc
predictions = self.predict([doc])
self.set_annotations([doc], predictions)
return doc
def predict(self, docs: Iterable[Doc]) -> Floats2d:
"""Apply the pipeline's model to a batch of docs, without modifying them."""
get_instances = self.model.attrs["get_instances"]
total_instances = sum([len(get_instances(doc)) for doc in docs])
if total_instances == 0:
msg.info("Could not determine any instances in any docs - can not make any predictions.")
scores = self.model.predict(docs)
return self.model.ops.asarray(scores)
def set_annotations(self, docs: Iterable[Doc], scores: Floats2d) -> None:
"""Modify a batch of `Doc` objects, using pre-computed scores."""
c = 0
get_instances = self.model.attrs["get_instances"]
for doc in docs:
for (e1, e2) in get_instances(doc):
offset = (e1.start, e2.start)
if offset not in doc._.rel:
doc._.rel[offset] = {}
for j, label in enumerate(self.labels):
doc._.rel[offset][label] = scores[c, j]
c += 1
def update(
self,
examples: Iterable[Example],
*,
drop: float = 0.0,
set_annotations: bool = False,
sgd: Optional[Optimizer] = None,
losses: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
"""Learn from a batch of documents and gold-standard information,
updating the pipe's model. Delegates to predict and get_loss."""
if losses is None:
losses = {}
losses.setdefault(self.name, 0.0)
set_dropout_rate(self.model, drop)
# check that there are actually any candidate instances in this batch of examples
total_instances = 0
for eg in examples:
total_instances += len(self.model.attrs["get_instances"](eg.predicted))
if total_instances == 0:
msg.info("Could not determine any instances in doc.")
return losses
# run the model
docs = [eg.predicted for eg in examples]
predictions, backprop = self.model.begin_update(docs)
loss, gradient = self.get_loss(examples, predictions)
backprop(gradient)
if sgd is not None:
self.model.finish_update(sgd)
losses[self.name] += loss
if set_annotations:
self.set_annotations(docs, predictions)
return losses
def get_loss(self, examples: Iterable[Example], scores) -> Tuple[float, float]:
"""Find the loss and gradient of loss for the batch of documents and
their predicted scores."""
truths = self._examples_to_truth(examples)
gradient = scores - truths
mean_square_error = (gradient ** 2).sum(axis=1).mean()
return float(mean_square_error), gradient
def initialize(
self,
get_examples: Callable[[], Iterable[Example]],
*,
nlp: Language = None,
labels: Optional[List[str]] = None,
):
"""Initialize the pipe for training, using a representative set
of data examples.
"""
if labels is not None:
for label in labels:
self.add_label(label)
else:
for example in get_examples():
relations = example.reference._.rel
for indices, label_dict in relations.items():
for label in label_dict.keys():
self.add_label(label)
self._require_labels()
subbatch = list(islice(get_examples(), 10))
doc_sample = [eg.reference for eg in subbatch]
label_sample = self._examples_to_truth(subbatch)
if label_sample is None:
raise ValueError("Call begin_training with relevant entities and relations annotated in "
"at least a few reference examples!")
self.model.initialize(X=doc_sample, Y=label_sample)
def _examples_to_truth(self, examples: List[Example]) -> Optional[numpy.ndarray]:
# check that there are actually any candidate instances in this batch of examples
nr_instances = 0
for eg in examples:
nr_instances += len(self.model.attrs["get_instances"](eg.reference))
if nr_instances == 0:
return None
truths = numpy.zeros((nr_instances, len(self.labels)), dtype="f")
c = 0
for i, eg in enumerate(examples):
for (e1, e2) in self.model.attrs["get_instances"](eg.reference):
gold_label_dict = eg.reference._.rel.get((e1.start, e2.start), {})
for j, label in enumerate(self.labels):
truths[c, j] = gold_label_dict.get(label, 0)
c += 1
truths = self.model.ops.asarray(truths)
return truths
def score(self, examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
"""Score a batch of examples."""
return score_relations(examples, self.threshold)
def score_relations(examples: Iterable[Example], threshold: float) -> Dict[str, Any]:
"""Score a batch of examples."""
micro_prf = PRFScore()
for example in examples:
gold = example.reference._.rel
pred = example.predicted._.rel
for key, pred_dict in pred.items():
gold_labels = [k for (k, v) in gold.get(key, {}).items() if v == 1.0]
for k, v in pred_dict.items():
if v >= threshold:
if k in gold_labels:
micro_prf.tp += 1
else:
micro_prf.fp += 1
else:
if k in gold_labels:
micro_prf.fn += 1
return {
"rel_micro_p": micro_prf.precision,
"rel_micro_r": micro_prf.recall,
"rel_micro_f": micro_prf.fscore,
} |