File size: 18,957 Bytes
592e96e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from transformers import BertConfig, BertModel, AutoTokenizer
from rdkit import Chem, RDLogger
from rdkit.Chem.Scaffolds import MurckoScaffold
import copy
from tqdm import tqdm
import os
from sklearn.metrics import roc_auc_score, root_mean_squared_error, mean_absolute_error
from itertools import compress
from collections import defaultdict
from sklearn.metrics.pairwise import cosine_similarity
RDLogger.DisableLog('rdApp.*')


torch.set_float32_matmul_precision('high')

# --- 0. Smiles enumeration
class SmilesEnumerator:
    """Generates randomized SMILES strings for data augmentation."""
    def randomize_smiles(self, smiles):
        try:
            mol = Chem.MolFromSmiles(smiles)
            return Chem.MolToSmiles(mol, doRandom=True, canonical=False) if mol else smiles
        except:
            return smiles


def compute_embedding_similarity(encoder, smiles_list, tokenizer, device, max_len=256):
    encoder.eval()
    enumerator = SmilesEnumerator()

    embeddings_orig = []
    embeddings_aug = []

    with torch.no_grad():
        for smi in smiles_list:
            # Original SMILES encoding
            encoding_orig = tokenizer(
                smi,
                truncation=True,
                padding='max_length',
                max_length=max_len,
                return_tensors='pt'
            )
            # Augmented SMILES encoding
            smi_aug = enumerator.randomize_smiles(smi)
            encoding_aug = tokenizer(
                smi_aug,
                truncation=True,
                padding='max_length',
                max_length=max_len,
                return_tensors='pt'
            )

            input_ids_orig = encoding_orig.input_ids.to(device)
            attention_mask_orig = encoding_orig.attention_mask.to(device)
            input_ids_aug = encoding_aug.input_ids.to(device)
            attention_mask_aug = encoding_aug.attention_mask.to(device)

            emb_orig = encoder(input_ids_orig, attention_mask_orig).cpu().numpy().flatten()
            emb_aug = encoder(input_ids_aug, attention_mask_aug).cpu().numpy().flatten()

            embeddings_orig.append(emb_orig)
            embeddings_aug.append(emb_aug)

    embeddings_orig = np.array(embeddings_orig)
    embeddings_aug = np.array(embeddings_aug)

    # Cosine similarity between each original and its augmented version
    similarities = np.array([cosine_similarity([embeddings_orig[i]], [embeddings_aug[i]])[0][0] for i in range(len(embeddings_orig))])
    return similarities

# --- 1. Data Loading ---
def load_lists_from_url(data):
    if data == 'bbbp':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/BBBP.csv')
        smiles, labels = df.smiles, df.p_np
    elif data == 'clintox':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/clintox.csv.gz', compression='gzip')
        smiles = df.smiles
        labels = df.drop(['smiles'], axis=1)
    elif data == 'hiv':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/HIV.csv')
        smiles, labels = df.smiles, df.HIV_active
    elif data == 'sider':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/sider.csv.gz', compression='gzip')
        smiles = df.smiles
        labels = df.drop(['smiles'], axis=1)
    elif data == 'esol':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/delaney-processed.csv')
        smiles = df.smiles
        labels = df['ESOL predicted log solubility in mols per litre']
    elif data == 'freesolv':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/SAMPL.csv')
        smiles = df.smiles
        labels = df.calc
    elif data == 'lipophicility':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/Lipophilicity.csv')
        smiles, labels = df.smiles, df['exp']
    elif data == 'tox21':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/tox21.csv.gz', compression='gzip')
        df = df.dropna(axis=0, how='any').reset_index(drop=True)
        smiles = df.smiles
        labels = df.drop(['mol_id', 'smiles'], axis=1)
    elif data == 'bace':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/bace.csv')
        smiles, labels = df.mol, df.Class
    elif data == 'qm8':
        df = pd.read_csv('https://deepchemdata.s3-us-west-1.amazonaws.com/datasets/qm8.csv')
        df = df.dropna(axis=0, how='any').reset_index(drop=True)
        smiles = df.smiles
        labels = df.drop(['smiles', 'E2-PBE0.1', 'E1-PBE0.1', 'f1-PBE0.1', 'f2-PBE0.1'], axis=1)
    return smiles, labels

# --- 2. Scaffold Splitting ---
class ScaffoldSplitter:
    def __init__(self, data, seed, train_frac=0.8, val_frac=0.1, test_frac=0.1, include_chirality=True):
        self.data = data
        self.seed = seed
        self.include_chirality = include_chirality
        self.train_frac = train_frac
        self.val_frac = val_frac
        self.test_frac = test_frac

    def generate_scaffold(self, smiles):
        mol = Chem.MolFromSmiles(smiles)
        scaffold = MurckoScaffold.MurckoScaffoldSmiles(mol=mol, includeChirality=self.include_chirality)
        return scaffold

    def scaffold_split(self):
        smiles, labels = load_lists_from_url(self.data)
        non_null = np.ones(len(smiles)) == 0

        if self.data in {'tox21', 'sider', 'clintox'}:
            for i in range(len(smiles)):
                if Chem.MolFromSmiles(smiles[i]) and labels.loc[i].isnull().sum() == 0:
                    non_null[i] = 1
        else:
            for i in range(len(smiles)):
                if Chem.MolFromSmiles(smiles[i]):
                    non_null[i] = 1

        smiles_list = list(compress(enumerate(smiles), non_null))
        rng = np.random.RandomState(self.seed)

        scaffolds = defaultdict(list)
        for i, sms in smiles_list:
            scaffold = self.generate_scaffold(sms)
            scaffolds[scaffold].append(i)

        scaffold_sets = list(scaffolds.values())
        rng.shuffle(scaffold_sets)
        n_total_val = int(np.floor(self.val_frac * len(smiles_list)))
        n_total_test = int(np.floor(self.test_frac * len(smiles_list)))
        train_idx, val_idx, test_idx = [], [], []

        for scaffold_set in scaffold_sets:
            if len(val_idx) + len(scaffold_set) <= n_total_val:
                val_idx.extend(scaffold_set)
            elif len(test_idx) + len(scaffold_set) <= n_total_test:
                test_idx.extend(scaffold_set)
            else:
                train_idx.extend(scaffold_set)
        return train_idx, val_idx, test_idx

# --- 2a. Normal Random Split ---
def random_split_indices(n, seed=42, train_frac=0.8, val_frac=0.1, test_frac=0.1):
    np.random.seed(seed)
    indices = np.random.permutation(n)
    n_train = int(n * train_frac)
    n_val = int(n * val_frac)
    train_idx = indices[:n_train]
    val_idx = indices[n_train:n_train+n_val]
    test_idx = indices[n_train+n_val:]
    return train_idx.tolist(), val_idx.tolist(), test_idx.tolist()

# --- 3. PyTorch Dataset ---
class MoleculeDataset(Dataset):
    def __init__(self, smiles_list, labels, tokenizer, max_len=512):
        self.smiles_list = smiles_list
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.smiles_list)

    def __getitem__(self, idx):
        smiles = self.smiles_list[idx]
        label = self.labels.iloc[idx]

        encoding = self.tokenizer(
            smiles,
            truncation=True,
            padding='max_length',
            max_length=self.max_len,
            return_tensors='pt'
        )
        item = {key: val.squeeze(0) for key, val in encoding.items()}
        if isinstance(label, pd.Series):
            label_values = label.values.astype(np.float32)
        else:
            label_values = np.array([label], dtype=np.float32)
        item['labels'] = torch.tensor(label_values, dtype=torch.float)
        return item

# --- 4. Model Architecture ---
def global_ap(x):
    return torch.mean(x.view(x.size(0), x.size(1), -1), dim=1)

class SimSonEncoder(nn.Module):
    def __init__(self, config: BertConfig, max_len: int, dropout: float = 0.1):
        super(SimSonEncoder, self).__init__()
        self.config = config
        self.max_len = max_len
        self.bert = BertModel(config, add_pooling_layer=False)
        self.linear = nn.Linear(config.hidden_size, max_len)
        self.dropout = nn.Dropout(dropout)
    def forward(self, input_ids, attention_mask=None):
        if attention_mask is None:
            attention_mask = input_ids.ne(self.config.pad_token_id)
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        hidden_states = self.dropout(outputs.last_hidden_state)
        pooled = global_ap(hidden_states)
        return self.linear(pooled)

class SimSonClassifier(nn.Module):
    def __init__(self, encoder: SimSonEncoder, num_labels: int, dropout=0.1):
        super(SimSonClassifier, self).__init__()
        self.encoder = encoder
        self.clf = nn.Linear(encoder.max_len, num_labels)
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(dropout)
    def forward(self, input_ids, attention_mask=None):
        x = self.encoder(input_ids, attention_mask)
        x = self.relu(self.dropout(x))
        logits = self.clf(x)
        return logits

    def load_encoder_params(self, state_dict_path):
        self.encoder.load_state_dict(torch.load(state_dict_path))
        print("Pretrained encoder parameters loaded.")

# --- 5. Training, Validation, and Testing Loops ---
def get_criterion(task_type, num_labels):
    if task_type == 'classification':
        return nn.BCEWithLogitsLoss()
    elif task_type == 'regression':
        return nn.MSELoss()
    else:
        raise ValueError(f"Unknown task type: {task_type}")

def train_epoch(model, dataloader, optimizer, scheduler, criterion, device):
    model.train()
    total_loss = 0
    for batch in dataloader:
        inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
        labels = batch['labels'].to(device)
        optimizer.zero_grad()
        outputs = model(**inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        #scheduler.step()
        total_loss += loss.item()
    return total_loss / len(dataloader)

def eval_epoch(model, dataloader, criterion, device):
    model.eval()
    total_loss = 0
    with torch.no_grad():
        for batch in dataloader:
            inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
            labels = batch['labels'].to(device)
            outputs = model(**inputs)
            loss = criterion(outputs, labels)
            total_loss += loss.item()
    return total_loss / len(dataloader)

def test_model(model, dataloader, device):
    model.eval()
    all_preds, all_labels = [], []
    with torch.no_grad():
        for batch in dataloader:
            inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
            labels = batch['labels']
            outputs = model(**inputs)
            preds = torch.sigmoid(outputs)
            all_preds.append(preds.cpu().numpy())
            all_labels.append(labels.numpy())
    return np.concatenate(all_preds), np.concatenate(all_labels)

def calc_val_metrics(model, dataloader, criterion, device, task_type):
    model.eval()
    all_labels, all_preds = [], []
    total_loss = 0
    with torch.no_grad():
        for batch in dataloader:
            inputs = {k: v.to(device) for k, v in batch.items() if k != 'labels'}
            labels = batch['labels'].to(device)
            outputs = model(**inputs)
            loss = criterion(outputs, labels)
            total_loss += loss.item()
            if task_type == 'classification':
                pred_probs = torch.sigmoid(outputs).cpu().numpy()
                all_preds.append(pred_probs)
                all_labels.append(labels.cpu().numpy())
            else:
                # Regression
                preds = outputs.cpu().numpy()
                all_preds.append(preds)
                all_labels.append(labels.cpu().numpy())
    avg_loss = total_loss / len(dataloader)
    if task_type == 'classification':
        y_true = np.concatenate(all_labels)
        y_pred = np.concatenate(all_preds)
        try:
            score = roc_auc_score(y_true, y_pred, average='macro')
        except Exception:
            score = 0.0
        return avg_loss, score
    else:
        return avg_loss, None

# --- 6. Main Execution Block ---
def main():
    DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {DEVICE}")

    DATASETS_TO_RUN = {
        # 'esol': {'task_type': 'regression', 'num_labels': 1, 'split': 'random'},
        #'tox21': {'task_type': 'classification', 'num_labels': 12, 'split': 'random'},
        #'hiv': {'task_type': 'classification', 'num_labels': 1, 'split': 'scaffold'},
        # Add more datasets here, e.g. 'bbbp': {'task_type': 'classification', 'num_labels': 1, 'split': 'random'},
        #'sider': {'task_type': 'classification', 'num_labels': 27, 'split': 'random'},
        #'bace': {'task_type': 'classification', 'num_labels': 1, 'split': 'random'},
        'clintox': {'task_type': 'classification', 'num_labels': 2, 'split': 'random'},
        #'bbbp': {'task_type': 'classification', 'num_labels': 1, 'split': 'scaffold'}
    }
    PATIENCE = 15
    EPOCHS = 50
    LEARNING_RATE = 1e-4
    BATCH_SIZE = 16
    MAX_LEN = 512

    TOKENIZER = AutoTokenizer.from_pretrained('DeepChem/ChemBERTa-77M-MTR')
    ENCODER_CONFIG = BertConfig(
        vocab_size=TOKENIZER.vocab_size,
        hidden_size=768,
        num_hidden_layers=4,
        num_attention_heads=12,
        intermediate_size=2048,
        max_position_embeddings=512
    )

    aggregated_results = {}

    for name, info in DATASETS_TO_RUN.items():
        print(f"\n{'='*20} Processing Dataset: {name.upper()} ({info['split']} split) {'='*20}")
        smiles, labels = load_lists_from_url(name)

        # Split selection
        if info.get('split', 'scaffold') == 'scaffold':
            splitter = ScaffoldSplitter(data=name, seed=42)
            train_idx, val_idx, test_idx = splitter.scaffold_split()
        elif info['split'] == 'random':
            train_idx, val_idx, test_idx = random_split_indices(len(smiles), seed=42)
        else:
            raise ValueError(f"Unknown split type for {name}: {info['split']}")

        train_smiles = smiles.iloc[train_idx].reset_index(drop=True)
        train_labels = labels.iloc[train_idx].reset_index(drop=True)
        val_smiles = smiles.iloc[val_idx].reset_index(drop=True)
        val_labels = labels.iloc[val_idx].reset_index(drop=True)
        test_smiles = smiles.iloc[test_idx].reset_index(drop=True)
        test_labels = labels.iloc[test_idx].reset_index(drop=True)
        print(f"Data split - Train: {len(train_smiles)}, Val: {len(val_smiles)}, Test: {len(test_smiles)}")

        train_dataset = MoleculeDataset(train_smiles, train_labels, TOKENIZER, MAX_LEN)
        val_dataset = MoleculeDataset(val_smiles, val_labels, TOKENIZER, MAX_LEN)
        test_dataset = MoleculeDataset(test_smiles, test_labels, TOKENIZER, MAX_LEN)

        train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
        val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
        test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)

        encoder = SimSonEncoder(ENCODER_CONFIG, 512)
        encoder = torch.compile(encoder)
        model = SimSonClassifier(encoder, num_labels=info['num_labels']).to(DEVICE)
        model.load_encoder_params('../simson_checkpoints/checkpoint_best_model.bin')
        criterion = get_criterion(info['task_type'], info['num_labels'])
        optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=0.0024)
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.59298)

        best_val_loss = float('-inf')
        best_model_state = None
        current_patience = 0
        for epoch in range(EPOCHS):
            train_loss = train_epoch(model, train_loader, optimizer, scheduler, criterion, DEVICE)
            val_loss, val_metric = calc_val_metrics(model, val_loader, criterion, 'cuda', info['task_type'])
            print(f"Epoch {epoch+1}/{EPOCHS} | Train Loss: {train_loss:.4f} | Val Loss: {val_loss:.4f} | ROC AUC: {val_metric:.4f}")

            if val_metric <= val_loss:
                best_val_loss = val_loss
                best_model_state = copy.deepcopy(model.state_dict())
                print(f"  -> New best model saved with validation loss: {best_val_loss:.4f}")
                current_patience = 0
            else:
                current_patience += 1
                if current_patience >= PATIENCE:
                    print(f'Early stopping at {PATIENCE} epochs')
                    break

        print("\nTesting with the best model...")
        if not best_model_state is None:
            model.load_state_dict(best_model_state)
        test_loss = eval_epoch(model, test_loader, criterion, DEVICE)
        print(f'Test loss: {test_loss}')
        test_preds, test_true = test_model(model, test_loader, DEVICE)

        aggregated_results[name] = {
            'best_val_loss': best_val_loss,
            'test_predictions': test_preds,
            'test_labels': test_true
        }
        print(f"Finished testing for {name}.")
        test_smiles_list = list(test_smiles)
        similarities = compute_embedding_similarity(
            model.encoder, test_smiles_list, TOKENIZER, DEVICE, MAX_LEN
        )
        print(f"Similarity score: {similarities.mean():.4f}")
        if name == 'do_not_save':
            torch.save(model.encoder.state_dict(), 'moleculenet_clintox_encoder.bin')



    print(f"\n{'='*20} AGGREGATED RESULTS {'='*20}")
    for name, result in aggregated_results.items():
        if name in ['bbbp', 'tox21', 'sider', 'clintox', 'hiv', 'bace']:
            auc = roc_auc_score(result['test_labels'], result['test_predictions'], average='macro')
            print(f'{name} ROC AUC: {auc}')

        if name in ['lipophicility', 'esol', 'qm8']:
            rmse = root_mean_squared_error(result['test_labels'], result['test_predictions'])
            mae = mean_absolute_error(result['test_labels'], result['test_predictions'])
            print(f'{name} MAE: {mae}')
            print(f'{name} RMSE: {rmse}')

    print("\nScript finished.")

if __name__ == '__main__':
    main()