File size: 17,462 Bytes
fc54e43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# =============================================================================
# training/trainer.py
# =============================================================================
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from typing import Dict, List, Optional
import time
import logging
from pathlib import Path
from core.config import MambaConfig
from routing.tlm_manager import TLMManager
from routing.aggregator import AttentionAggregator
from training.optimizer import MambaOptimizer
from training.loss import MambaLoss
from training.data_loader import create_data_loaders
from core.tokenizer import MambaTokenizer
from core.preprocess import TextPreprocessor
class MambaSwarmTrainer:
"""Multi-phase trainer for Mamba swarm architecture"""
def __init__(self, config: MambaConfig):
self.config = config
self.device = config.device
# Initialize components
self.tokenizer = MambaTokenizer(config)
self.preprocessor = TextPreprocessor(config)
# Initialize TLM manager and aggregator
self.tlm_manager = TLMManager(config)
self.aggregator = AttentionAggregator(config)
self.aggregator.to(self.device)
# Initialize loss function
self.loss_fn = MambaLoss(config, config.vocab_size)
# Create data loaders
self.data_loaders = create_data_loaders(config, self.tokenizer, self.preprocessor)
# Training state
self.global_step = 0
self.phase = "foundation" # foundation, specialists, aggregator, end_to_end
# Setup logging
self.setup_logging()
def setup_logging(self):
"""Setup training logging"""
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('training.log'),
logging.StreamHandler()
]
)
self.logger = logging.getLogger(__name__)
def train_foundation_phase(self, num_steps: int = 10000):
"""Phase 1: Train shared foundation weights"""
self.logger.info("Starting foundation training phase...")
self.phase = "foundation"
# Get a reference specialist for foundation training
reference_specialist = list(self.tlm_manager.specialists.values())[0]
optimizer = MambaOptimizer(reference_specialist.model, self.config)
reference_specialist.model.train()
for step in range(num_steps):
batch = next(iter(self.data_loaders['main']))
# Move to device
input_ids = batch['input_ids'].to(self.device)
target_ids = batch['target_ids'].to(self.device)
# Forward pass
logits, loss = reference_specialist.model(input_ids, target_ids)
# Backward pass
optimizer.zero_grad()
loss.backward()
lr = optimizer.step()
self.global_step += 1
if step % 100 == 0:
self.logger.info(f"Foundation step {step}, loss: {loss.item():.4f}, lr: {lr:.6f}")
# Copy foundation weights to all specialists
self._copy_foundation_weights(reference_specialist)
self.logger.info("Foundation training phase completed!")
def _copy_foundation_weights(self, reference_specialist):
"""Copy foundation weights to all specialists"""
reference_state = reference_specialist.model.state_dict()
for specialist in self.tlm_manager.specialists.values():
if specialist != reference_specialist:
# Copy shared layers (first half of the model)
specialist_state = specialist.model.state_dict()
for name, param in reference_state.items():
if 'layers.' in name:
# Extract layer number
layer_num = int(name.split('.')[1])
if layer_num < self.config.n_layers // 2: # Share first half
specialist_state[name] = param.clone()
elif 'embedding' in name: # Share embeddings
specialist_state[name] = param.clone()
specialist.model.load_state_dict(specialist_state)
def train_specialists_phase(self, num_steps: int = 5000):
"""Phase 2: Train domain specialists in parallel"""
self.logger.info("Starting specialist training phase...")
self.phase = "specialists"
# Create optimizers for each specialist
specialist_optimizers = {}
for specialist_id, specialist in self.tlm_manager.specialists.items():
specialist_optimizers[specialist_id] = MambaOptimizer(
specialist.model, self.config
)
specialist.model.train()
# Train specialists in parallel (simplified - could use actual parallel training)
for step in range(num_steps):
total_loss = 0.0
# Train each specialist on its domain data
for specialist_id in range(min(10, self.config.num_specialists)): # Limit for demo
if specialist_id in self.data_loaders['domains']:
try:
batch = next(iter(self.data_loaders['domains'][specialist_id]))
# Move to device
input_ids = batch['input_ids'].to(self.device)
target_ids = batch['target_ids'].to(self.device)
# Get specialist and optimizer
specialist = self.tlm_manager.specialists[specialist_id]
optimizer = specialist_optimizers[specialist_id]
# Forward pass
logits, loss = specialist.model(input_ids, target_ids)
# Backward pass
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
except Exception as e:
self.logger.warning(f"Error training specialist {specialist_id}: {e}")
continue
self.global_step += 1
if step % 100 == 0:
avg_loss = total_loss / min(10, self.config.num_specialists)
self.logger.info(f"Specialists step {step}, avg loss: {avg_loss:.4f}")
self.logger.info("Specialist training phase completed!")
def train_aggregator_phase(self, num_steps: int = 3000):
"""Phase 3: Train aggregator to combine specialist outputs"""
self.logger.info("Starting aggregator training phase...")
self.phase = "aggregator"
# Freeze specialist models
for specialist in self.tlm_manager.specialists.values():
specialist.model.eval()
for param in specialist.model.parameters():
param.requires_grad = False
# Create optimizer for aggregator
aggregator_optimizer = MambaOptimizer(self.aggregator, self.config)
self.aggregator.train()
for step in range(num_steps):
try:
batch = next(iter(self.data_loaders['main']))
# Simulate specialist outputs (simplified for demo)
specialist_outputs = self._simulate_specialist_outputs(batch)
# Get target text for comparison
target_ids = batch['target_ids'].to(self.device)
# Forward pass through aggregator
logits = self.aggregator(specialist_outputs)
# Compute loss
loss_dict = self.loss_fn(logits, target_ids)
loss = loss_dict['total_loss']
# Backward pass
aggregator_optimizer.zero_grad()
loss.backward()
aggregator_optimizer.step()
self.global_step += 1
if step % 100 == 0:
self.logger.info(f"Aggregator step {step}, loss: {loss.item():.4f}")
except Exception as e:
self.logger.warning(f"Error in aggregator training step {step}: {e}")
continue
self.logger.info("Aggregator training phase completed!")
def _simulate_specialist_outputs(self, batch) -> Dict[int, List[Dict]]:
"""Simulate specialist outputs for aggregator training"""
# This is a simplified simulation - in real training, you'd run
# the text through the router and specialists
input_ids = batch['input_ids'].to(self.device)
# Simulate 3 chunks with 2-3 specialists each
specialist_outputs = {}
for chunk_id in range(3):
chunk_results = []
# Simulate 2-3 specialists working on this chunk
for i in range(2 + chunk_id % 2):
specialist_id = (chunk_id * 3 + i) % self.config.num_specialists
if specialist_id in self.tlm_manager.specialists:
specialist = self.tlm_manager.specialists[specialist_id]
# Get encoding from specialist
with torch.no_grad():
encoding = specialist.encode(input_ids[:1]) # Single sample
chunk_results.append({
'chunk_id': chunk_id,
'specialist_id': specialist_id,
'confidence': 0.8 + 0.2 * torch.rand(1).item(),
'encoding': encoding[0], # Remove batch dim
'domain': f'domain_{specialist_id}'
})
specialist_outputs[chunk_id] = chunk_results
return specialist_outputs
def train_end_to_end_phase(self, num_steps: int = 2000):
"""Phase 4: End-to-end fine-tuning of the entire system"""
self.logger.info("Starting end-to-end training phase...")
self.phase = "end_to_end"
# Unfreeze all parameters
for specialist in self.tlm_manager.specialists.values():
specialist.model.train()
for param in specialist.model.parameters():
param.requires_grad = True
self.aggregator.train()
# Create system-wide optimizer with lower learning rate
all_params = []
# Add specialist parameters
for specialist in self.tlm_manager.specialists.values():
all_params.extend(specialist.model.parameters())
# Add aggregator parameters
all_params.extend(self.aggregator.parameters())
# Create optimizer with reduced learning rate
end_to_end_config = self.config
end_to_end_config.learning_rate = self.config.learning_rate * 0.1
system_optimizer = torch.optim.AdamW(
all_params,
lr=end_to_end_config.learning_rate,
weight_decay=end_to_end_config.weight_decay
)
for step in range(num_steps):
try:
batch = next(iter(self.data_loaders['main']))
# Full system forward pass (simplified)
specialist_outputs = self._simulate_specialist_outputs(batch)
logits = self.aggregator(specialist_outputs)
# Compute loss
target_ids = batch['target_ids'].to(self.device)
loss_dict = self.loss_fn(logits, target_ids)
loss = loss_dict['total_loss']
# Backward pass
system_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(all_params, max_norm=1.0)
system_optimizer.step()
self.global_step += 1
if step % 100 == 0:
self.logger.info(f"End-to-end step {step}, loss: {loss.item():.4f}")
except Exception as e:
self.logger.warning(f"Error in end-to-end training step {step}: {e}")
continue
self.logger.info("End-to-end training phase completed!")
def full_training_pipeline(self):
"""Run the complete 4-phase training pipeline"""
self.logger.info("Starting full Mamba swarm training pipeline...")
start_time = time.time()
try:
# Phase 1: Foundation training
self.train_foundation_phase(num_steps=1000) # Reduced for demo
# Phase 2: Specialist training
self.train_specialists_phase(num_steps=500) # Reduced for demo
# Phase 3: Aggregator training
self.train_aggregator_phase(num_steps=300) # Reduced for demo
# Phase 4: End-to-end fine-tuning
self.train_end_to_end_phase(num_steps=200) # Reduced for demo
total_time = time.time() - start_time
self.logger.info(f"Training completed in {total_time:.2f} seconds!")
except Exception as e:
self.logger.error(f"Training failed: {e}")
raise
def save_checkpoint(self, checkpoint_path: str):
"""Save training checkpoint"""
checkpoint = {
'global_step': self.global_step,
'phase': self.phase,
'config': self.config.__dict__,
'aggregator_state': self.aggregator.state_dict(),
'specialist_states': {}
}
# Save specialist states
for specialist_id, specialist in self.tlm_manager.specialists.items():
checkpoint['specialist_states'][specialist_id] = specialist.model.state_dict()
torch.save(checkpoint, checkpoint_path)
self.logger.info(f"Checkpoint saved to {checkpoint_path}")
def load_checkpoint(self, checkpoint_path: str):
"""Load training checkpoint"""
checkpoint = torch.load(checkpoint_path, map_location=self.device)
self.global_step = checkpoint['global_step']
self.phase = checkpoint['phase']
# Load aggregator state
self.aggregator.load_state_dict(checkpoint['aggregator_state'])
# Load specialist states
for specialist_id, state_dict in checkpoint['specialist_states'].items():
if specialist_id in self.tlm_manager.specialists:
self.tlm_manager.specialists[specialist_id].model.load_state_dict(state_dict)
self.logger.info(f"Checkpoint loaded from {checkpoint_path}")
def evaluate(self, eval_steps: int = 100) -> Dict[str, float]:
"""Evaluate the trained model"""
self.logger.info("Starting evaluation...")
# Set models to eval mode
for specialist in self.tlm_manager.specialists.values():
specialist.model.eval()
self.aggregator.eval()
total_loss = 0.0
num_steps = 0
with torch.no_grad():
for step in range(eval_steps):
try:
batch = next(iter(self.data_loaders['main']))
# Forward pass
specialist_outputs = self._simulate_specialist_outputs(batch)
logits = self.aggregator(specialist_outputs)
# Compute loss
target_ids = batch['target_ids'].to(self.device)
loss_dict = self.loss_fn(logits, target_ids)
total_loss += loss_dict['total_loss'].item()
num_steps += 1
except Exception as e:
self.logger.warning(f"Error in evaluation step {step}: {e}")
continue
avg_loss = total_loss / max(num_steps, 1)
perplexity = torch.exp(torch.tensor(avg_loss)).item()
results = {
'eval_loss': avg_loss,
'perplexity': perplexity,
'num_steps': num_steps
}
self.logger.info(f"Evaluation results: {results}")
return results |