|
Hugging Face's logo |
|
--- |
|
language: ha |
|
datasets: |
|
|
|
--- |
|
# bert-base-multilingual-cased-finetuned-hausa |
|
## Model description |
|
**bert-base-multilingual-cased-finetuned-hausa** is a **Hausa BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Hausa language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. |
|
|
|
Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Hausa corpus. |
|
## Intended uses & limitations |
|
#### How to use |
|
You can use this model with Transformers *pipeline* for masked token prediction. |
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-hausa') |
|
>>> unmasker("Shugaban [MASK] Muhammadu Buhari ya amince da shawarar da ma’aikatar sufuri karkashin jagoranci") |
|
|
|
[{'sequence': |
|
'[CLS] Shugaban Nigeria Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', |
|
'score': 0.9762618541717529, |
|
'token': 22045, |
|
'token_str': 'Nigeria'}, |
|
{'sequence': '[CLS] Shugaban Ka Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.007239189930260181, |
|
'token': 25444, |
|
'token_str': 'Ka'}, |
|
{'sequence': '[CLS] Shugaban, Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001990817254409194, |
|
'token': 117, |
|
'token_str': ','}, |
|
{'sequence': '[CLS] Shugaban Ghana Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.001566368737258017, |
|
'token': 28682, |
|
'token_str': 'Ghana'}, |
|
{'sequence': '[CLS] Shugabanmu Muhammadu Buhari ya amince da shawarar da ma [UNK] aikatar sufuri karkashin jagoranci [SEP]', 'score': 0.0009375187801197171, |
|
'token': 11717, |
|
'token_str': '##mu'}] |
|
|
|
``` |
|
#### Limitations and bias |
|
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. |
|
## Training data |
|
This model was fine-tuned on [Hausa CC-100](http://data.statmt.org/cc-100/) |
|
|
|
## Training procedure |
|
This model was trained on a single NVIDIA V100 GPU |
|
|
|
## Eval results on Test set (F-score, average over 5 runs) |
|
Dataset| mBERT F1 | ha_bert F1 |
|
-|-|- |
|
[MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 86.65 | 91.31 |
|
[VOA Hausa Textclass](https://huggingface.co/datasets/hausa_voa_topics) | 84.76 | 90.98 |
|
|
|
### BibTeX entry and citation info |
|
By David Adelani |
|
``` |
|
|
|
``` |
|
|
|
|
|
|