|
Hugging Face's logo |
|
--- |
|
language: yo |
|
datasets: |
|
|
|
--- |
|
# bert-base-multilingual-cased-finetuned-yoruba |
|
## Model description |
|
**bert-base-multilingual-cased-finetuned-yoruba** is a **Yoruba BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Yorùbá language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets. |
|
|
|
Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Yorùbá corpus. |
|
## Intended uses & limitations |
|
#### How to use |
|
You can use this model with Transformers *pipeline* for masked token prediction. |
|
```python |
|
>>> from transformers import pipeline |
|
>>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-yoruba') |
|
>>> unmasker("Arẹmọ Phillip to jẹ ọkọ [MASK] Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun") |
|
|
|
[{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Mary Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.1738305538892746, |
|
'token': 12176, |
|
'token_str': 'Mary'}, |
|
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Queen Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.16382873058319092, |
|
'token': 13704, |
|
'token_str': 'Queen'}, |
|
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ ti Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.13272495567798615, |
|
'token': 14382, |
|
'token_str': 'ti'}, |
|
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ King Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.12823280692100525, |
|
'token': 11515, |
|
'token_str': 'King'}, |
|
{'sequence': '[CLS] Arẹmọ Phillip to jẹ ọkọ Lady Elizabeth to ti wa lori aisan ti dagbere faye lẹni ọdun mọkandilọgọrun [SEP]', 'score': 0.07841219753026962, |
|
'token': 14005, |
|
'token_str': 'Lady'}] |
|
|
|
``` |
|
#### Limitations and bias |
|
This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. |
|
## Training data |
|
This model was fine-tuned on Bible, JW300, [Menyo-20k](https://huggingface.co/datasets/menyo20k_mt), [Yoruba Embedding corpus](https://huggingface.co/datasets/yoruba_text_c3) and [CC-Aligned](https://opus.nlpl.eu/), Wikipedia, news corpora (BBC Yoruba, VON Yoruba, Asejere, Alaroye), and other small datasets curated from friends. |
|
|
|
## Training procedure |
|
This model was trained on a single NVIDIA V100 GPU |
|
|
|
## Eval results on Test set (F-score) |
|
Dataset|F1-score |
|
-|- |
|
Yoruba GV NER |75.34 |
|
MasakhaNER |80.82 |
|
BBC Yoruba |80.66 |
|
|
|
### BibTeX entry and citation info |
|
By David Adelani |
|
``` |
|
|
|
``` |
|
|
|
|
|
|