File size: 2,030 Bytes
5dee4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: wav2vec2-base-finetuned-gtzan
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-base-finetuned-gtzan

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8270
- Accuracy: 0.83

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0547        | 0.99  | 56   | 2.0066          | 0.45     |
| 1.7392        | 2.0   | 113  | 1.5974          | 0.57     |
| 1.5689        | 2.99  | 169  | 1.4470          | 0.59     |
| 1.2626        | 4.0   | 226  | 1.2541          | 0.66     |
| 1.1188        | 4.99  | 282  | 1.2458          | 0.65     |
| 0.9776        | 6.0   | 339  | 0.9830          | 0.75     |
| 0.9396        | 6.99  | 395  | 0.8980          | 0.74     |
| 0.8677        | 8.0   | 452  | 0.8398          | 0.8      |
| 0.8194        | 8.99  | 508  | 0.7868          | 0.82     |
| 0.7274        | 9.91  | 560  | 0.8270          | 0.83     |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3