File size: 7,176 Bytes
49f0c5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cPWaiNGVZfB1"
      },
      "source": [
        "## Get the JSONL file from github repo"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "kwTs86SwToom",
        "outputId": "f5562864-a61d-4ff6-f89a-553047685468"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "--2024-03-29 17:12:50--  https://raw.githubusercontent.com/DagimB/Text_Mining_ecfr_title12/main/ecfr-title-12.jsonl\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.111.133, 185.199.109.133, 185.199.108.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 17239826 (16M) [text/plain]\n",
            "Saving to: ‘ecfr-title-12.jsonl’\n",
            "\n",
            "ecfr-title-12.jsonl 100%[===================>]  16.44M  96.6MB/s    in 0.2s    \n",
            "\n",
            "2024-03-29 17:12:50 (96.6 MB/s) - ‘ecfr-title-12.jsonl’ saved [17239826/17239826]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "# Accessing the title 12 JSONL file\n",
        "\n",
        "!wget https://raw.githubusercontent.com/ManjinderUNCC/prodigy-ecfr-textcat/main/data/ecfr-title-12.jsonl"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "4nZE63owa0Q5",
        "outputId": "3a20455c-6f65-4da2-af36-ce9a13e507c1"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Mounted at /content/drive\n"
          ]
        }
      ],
      "source": [
        "from google.colab import drive\n",
        "\n",
        "# Mount Google Drive\n",
        "drive.mount('/content/drive')"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Bipzb8pwcm5T"
      },
      "source": [
        "## Convert JSONL file into an array"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "vvQtsxxxZQs9"
      },
      "outputs": [],
      "source": [
        "# deletes the first line of the jsonl file and saves the rest as output.jsonl\n",
        "\n",
        "import json\n",
        "\n",
        "with open('ecfr-title-12.jsonl', 'r', encoding='utf-8') as infile:\n",
        "        next(infile)\n",
        "        with open('/content/drive/My Drive/output.jsonl', 'w', encoding='utf-8') as outfile:\n",
        "          for line in infile:\n",
        "            outfile.write(line)\n",
        "\n",
        "file_path = '/content/drive/My Drive/output.jsonl'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "dDbDFyUdcmIr"
      },
      "outputs": [],
      "source": [
        "def jsonl_to_array(file_path):\n",
        "    data = []\n",
        "    with open(file_path, 'r') as file:\n",
        "        for line in file:\n",
        "            # Strip any leading/trailing whitespace and parse JSON\n",
        "            json_data = json.loads(line.strip())\n",
        "            data.append(json_data)\n",
        "    return data\n",
        "\n",
        "data_array = jsonl_to_array(file_path)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9njD4a2ee7xl"
      },
      "source": [
        "## Split array into train and evaluation using train_test_split"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "x3rGk_ISfPUs",
        "outputId": "fb1ec5d4-5fd7-4ff4-e0b5-175fb16b6c31"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "4665"
            ]
          },
          "execution_count": 5,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# see how long the array is\n",
        "len(data_array)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "isJmBgRGe2rc",
        "outputId": "13f453a7-4c1b-4527-c334-0e02c09caf52"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Length of eval dataset: 200\n"
          ]
        }
      ],
      "source": [
        "# Use train_test_split to get an evaluation dataset that is 200 in length\n",
        "\n",
        "from sklearn.model_selection import train_test_split\n",
        "train_data, eval_data = train_test_split(data_array, test_size=0.0428, random_state=42)\n",
        "\n",
        "print(f\"Length of eval dataset: {len(eval_data)}\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "F8Rjwp8Bh3EP",
        "outputId": "c2831246-fb42-41b5-aba7-10f99c50fee7"
      },
      "outputs": [
        {
          "data": {
            "text/plain": [
              "4465"
            ]
          },
          "execution_count": 7,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "len(train_data)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "mIggR8P2LHLl"
      },
      "source": [
        "## Turn the two arrays back into JSONL files for Prodigy"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RG78jgEOLWTr"
      },
      "outputs": [],
      "source": [
        "def array_to_jsonl(data_array, file_path):\n",
        "    with open(file_path, 'w') as file:\n",
        "        for item in data_array:\n",
        "            json_line = json.dumps(item)\n",
        "            file.write(json_line + '\\n')\n",
        "\n",
        "file_path = 'data/eval.jsonl'\n",
        "array_to_jsonl(eval_data, file_path)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "z_sgIHfyNFLm"
      },
      "outputs": [],
      "source": [
        "file_path = 'data/train.jsonl'\n",
        "array_to_jsonl(train_data, file_path)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}