File size: 19,667 Bytes
8185852
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n    Policy class with Q-Value Net and target net for DQN\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function DQNPolicy.__init__ at 0x000001DB36376CA0>", "_build": "<function DQNPolicy._build at 0x000001DB36376D30>", "make_q_net": "<function DQNPolicy.make_q_net at 0x000001DB36376DC0>", "forward": "<function DQNPolicy.forward at 0x000001DB36376E50>", "_predict": "<function DQNPolicy._predict at 0x000001DB36376EE0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001DB36376F70>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001DB36380040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001DB3637CA40>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVNQsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBSMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgKjAJ1NJSJiIeUUpQoSwNoDk5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1681229310979244200, "learning_rate": 0.0002, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVpwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdUM6XFByb2dyYW0gRmlsZXMgKHg4NilcTWljcm9zb2Z0IFZpc3VhbCBTdHVkaW9cU2hhcmVkXFB5dGhvbjM5XzY0XGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJrBr7uyr6s/0EqsvQqeBb97y3W6W43kPAAAAAAAAAAAE7qDPn86YD+5Z5Y86h3gvYvl7T4NY6Q9AAAAAAAAAADNGk6+e7NIPxvgpL65wgG/mLA6vhL3Xz0AAAAAAAAAAK7Fkr63zQe989+wujOpAbnqHnU+u53AOQAAgD8AAIA/LUFBvmxmbz6d9ZO936+vvjmdFL4GrTG9AAAAAAAAAADbzpO+C9NeP9SMur6OoQ2/m+X5vbGBOTsAAAAAAAAAAMARnT2u0Z+6eJ0QOwGJmDbrq3E5puYlugAAgD8AAAAAc4W0vUKRAD/ov4u9M9z/vtuhpr2mJSo9AAAAAAAAAADTZwG+osi0P42vTr5ur8G+7mWjvoWutT4AAAAAAAAAAF0EkT5GCXY/Zk6TPSNS+b1QN6Y+uz2mPQAAAAAAAAAA2qOJvWv6tT9BbLS+uVZovito7732ctG8AAAAAAAAAACzjjI+LalNPjubJb6so8S+y6eXPMbtLr0AAAAAAAAAAGaNFr1TRn0/ujgFvuqmLr9tMqo6NgFyvQAAAAAAAAAAWvfXPeAQkj/gNY4+Bg5Ov6sYQT1Cnko9AAAAAAAAAABG11K+EXJVP27KU76/GOO+cvnnvaBpgzwAAAAAAAAAAKY/2z3B8CU+3m6iPh2PDT1KRTA+xSTnPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOnlLuDMK0/8Xibvdt8/b4s3Bi7bwOmuwAAAAAAAAAAQJ2DPhTaYD84XlU9wkzyvYHX6z4KVrE9AAAAAAAAAADG1Uq+Z59LPxbgpL4d3vW+SH09vhv3Xz0AAAAAAAAAAPDDkr7dyge9X1I1vJOFg7oZGnU+WXBFOwAAgD8AAIA/E35AvhlNdz6q8Hy9V4eivqpkEr5LKbC9AAAAAAAAAAB68ZG+2AJiP+ahv75e0g+/zy/6vevn97kAAAAAAAAAAIAGnT0U1J+63sAAvMA82DZ75Ik5Q1s+tgAAgD8AAAAApiqzvU9yAz9GImm9urjyvsviqr03Goy7AAAAAAAAAACaBv+9ZOK1Px46V745SrO+dXusvoisxz4AAAAAAAAAAP2gkD6Au3Y/bg/WPQcjA75XI6Q+hLfEPQAAAAAAAAAAjWWCvaChtj/uma6+87RNvvzJ7L0yVZK9AAAAAAAAAABTPDQ+oYJWPlF2G746ONS++CWpPKyiDr0AAAAAAAAAAM0ZEb0qmoA/ujgFvj7TJ7/MWYs7RQFyvQAAAAAAAAAAADrSPUJilD/fNY4+XjpHvyj3Nj1Lnko9AAAAAAAAAAA2u1C+MwBYP0V0Zb6fKfK+953pvX3KDjwAAAAAAAAAAM2i1D0dISU+MMSuPiemiDv5fSo+7TX6PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 13413, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVYRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVKcDWc8bcECUhpRSlIwBbJRL0owBdJRHQLUrGQqqfe11fZQoaAZoCWgPQwiL/WX35JtvQJSGlFKUaBVNdgFoFkdAtSsoUj9n9XV9lChoBmgJaA9DCN1c/G3P7G5AlIaUUpRoFUvjaBZHQLUrPHuJDVp1fZQoaAZoCWgPQwifOlYpvY1vQJSGlFKUaBVNGAFoFkdAtStOKHfuTnV9lChoBmgJaA9DCDroEg49BHNAlIaUUpRoFUv2aBZHQLUrbuPmxMZ1fZQoaAZoCWgPQwii0oiZPbhwQJSGlFKUaBVNQAFoFkdAtSwKsXBP9HV9lChoBmgJaA9DCKqZtRQQR25AlIaUUpRoFUv7aBZHQLUsCrFwT/R1fZQoaAZoCWgPQwhVFoVdlABxQJSGlFKUaBVNGQFoFkdAtSwphAnlXHV9lChoBmgJaA9DCPn3GReOp29AlIaUUpRoFU1OAWgWR0C1LDPXbuc+dX2UKGgGaAloD0MIcY46Oi7icUCUhpRSlGgVTQ8BaBZHQLUsM9du5z51fZQoaAZoCWgPQwi3KLNBptBxQJSGlFKUaBVNBgFoFkdAtSw1mCiAUnV9lChoBmgJaA9DCCWTUzuD1nBAlIaUUpRoFU0qAWgWR0C1LH6pxWDIdX2UKGgGaAloD0MIBiy5ikVsb0CUhpRSlGgVTQUDaBZHQLUs25z5oGp1fZQoaAZoCWgPQwgmcyzvqutwQJSGlFKUaBVNBQFoFkdAtS2IWfseGXV9lChoBmgJaA9DCFqfckyWkm9AlIaUUpRoFU1nAWgWR0C1LYoao/A1dX2UKGgGaAloD0MIzqlkAKgXcUCUhpRSlGgVTQcBaBZHQLUtoTpPhyd1fZQoaAZoCWgPQwgJjWDj+s9RQJSGlFKUaBVLlGgWR0C1LqMYdhiLdX2UKGgGaAloD0MI/P1itqQZcECUhpRSlGgVTQkBaBZHQLUvjB0p3HJ1fZQoaAZoCWgPQwjPoncqIHxyQJSGlFKUaBVNUwFoFkdAtS+aXdCVr3V9lChoBmgJaA9DCB6HwfwVCXFAlIaUUpRoFU0OAWgWR0C1L6AwK0D2dX2UKGgGaAloD0MIDd5X5UK+bkCUhpRSlGgVTVgBaBZHQLUvoP9DQZ51fZQoaAZoCWgPQwj0UxwH3iptQJSGlFKUaBVNGwFoFkdAtS+gipvP1XV9lChoBmgJaA9DCARVo1cDyW9AlIaUUpRoFU1jAWgWR0C1L6bqptJndX2UKGgGaAloD0MIm1lLAenhcECUhpRSlGgVTR8BaBZHQLUvryYoiLV1fZQoaAZoCWgPQwjRkzKpIa9wQJSGlFKUaBVNFAFoFkdAtS+2VC5VfnV9lChoBmgJaA9DCPzIrUm3KnBAlIaUUpRoFU1mAWgWR0C1MLaCDmKZdX2UKGgGaAloD0MIrdo1IS1fbkCUhpRSlGgVTXkBaBZHQLUxZKOktVd1fZQoaAZoCWgPQwgVdHtJ48NuQJSGlFKUaBVN5gFoFkdAtTFrvNNahnV9lChoBmgJaA9DCBwHXi13Nm5AlIaUUpRoFUvTaBZHQLUxlUCaJAN1fZQoaAZoCWgPQwhuFi8WBpRvQJSGlFKUaBVNegFoFkdAtTK/TodMkHV9lChoBmgJaA9DCBnjw+zl0m9AlIaUUpRoFU1/AWgWR0C1MtEpVjqfdX2UKGgGaAloD0MIvobguExmcUCUhpRSlGgVS+1oFkdAtTLh4u9OAXV9lChoBmgJaA9DCDKSPUJNNG5AlIaUUpRoFU0xAWgWR0C1M+eWOZLJdX2UKGgGaAloD0MIvFzEd+ImcECUhpRSlGgVTSwBaBZHQLUz55Y5ksl1fZQoaAZoCWgPQwjpmzQNCrZtQJSGlFKUaBVNMgFoFkdAtTPrljmSyXV9lChoBmgJaA9DCHyA7svZB3FAlIaUUpRoFU01AWgWR0C1M+lXA/LUdX2UKGgGaAloD0MIpivYRjz2bUCUhpRSlGgVTS0BaBZHQLUz6VcD8tR1fZQoaAZoCWgPQwj9hokGKQVwQJSGlFKUaBVNxAFoFkdAtTP7avicXnV9lChoBmgJaA9DCJdyvth7aXFAlIaUUpRoFUvKaBZHQLU0eCOFQEZ1fZQoaAZoCWgPQwjFc7aA0KdxQJSGlFKUaBVNCQFoFkdAtTR15E+gUXV9lChoBmgJaA9DCNqNPubD23BAlIaUUpRoFU1eAWgWR0C1NHpblijMdX2UKGgGaAloD0MIgJnv4OelcUCUhpRSlGgVS/5oFkdAtTYyE4//vXV9lChoBmgJaA9DCHPzjeieym5AlIaUUpRoFU3tAWgWR0C1NmA8SwnqdX2UKGgGaAloD0MIntFWJZGEcECUhpRSlGgVS8loFkdAtTaRyHVPN3V9lChoBmgJaA9DCMyZ7Qp9yW9AlIaUUpRoFU2IAWgWR0C1NuDWTX8PdX2UKGgGaAloD0MIFoczv9q1cECUhpRSlGgVS/VoFkdAtTcwukDZDnV9lChoBmgJaA9DCA6GOqxwuG9AlIaUUpRoFU1aAWgWR0C1N78y31BddX2UKGgGaAloD0MIrYVZaKdfcECUhpRSlGgVS+5oFkdAtTfT2wmmcnV9lChoBmgJaA9DCPCHn/8egXBAlIaUUpRoFUvzaBZHQLU34m7J4jd1fZQoaAZoCWgPQwhtqYO8Hg1tQJSGlFKUaBVL9GgWR0C1N+USuhbodX2UKGgGaAloD0MID0dX6S5NcECUhpRSlGgVTXIBaBZHQLU4FHqeK9B1fZQoaAZoCWgPQwht5pDUQpxuQJSGlFKUaBVNYAFoFkdAtTjr6InBtXV9lChoBmgJaA9DCJ2f4jhwWGJAlIaUUpRoFU3oA2gWR0C1OQ63d9DydX2UKGgGaAloD0MIAwZJn9aacECUhpRSlGgVTS0CaBZHQLU5U8IAwPB1fZQoaAZoCWgPQwibx2Ew/7FwQJSGlFKUaBVNgQFoFkdAtTlTDvVmSXV9lChoBmgJaA9DCI/k8h9So29AlIaUUpRoFUvSaBZHQLU5XwAEMb51fZQoaAZoCWgPQwgsvMtFPOBxQJSGlFKUaBVLvWgWR0C1OWTwc5sCdX2UKGgGaAloD0MI7s7abdffcECUhpRSlGgVTbsBaBZHQLU58/smfGx1fZQoaAZoCWgPQwj2tpkK8UxwQJSGlFKUaBVN7gFoFkdAtTqTfyf+THV9lChoBmgJaA9DCKs97IWCbXFAlIaUUpRoFUvPaBZHQLU6k38n/kx1fZQoaAZoCWgPQwiIDRZO0vZvQJSGlFKUaBVNIAFoFkdAtTrLPBzmwXV9lChoBmgJaA9DCL9iDRc5dnBAlIaUUpRoFUvnaBZHQLU6yPz4DcN1fZQoaAZoCWgPQwjON6J71llvQJSGlFKUaBVNSwFoFkdAtTw0yFfzBnV9lChoBmgJaA9DCHi2R284GXBAlIaUUpRoFU2xAWgWR0C1PFcrNGExdX2UKGgGaAloD0MIwHlx4qs3b0CUhpRSlGgVTYABaBZHQLU8c/h2nsN1fZQoaAZoCWgPQwj/dW7aDIJxQJSGlFKUaBVNSQFoFkdAtTx3LEDQq3V9lChoBmgJaA9DCF392CS/2W9AlIaUUpRoFUvvaBZHQLU9Nt4RmK91fZQoaAZoCWgPQwg6yVaXU/VuQJSGlFKUaBVNPQFoFkdAtT09n003wXV9lChoBmgJaA9DCDLKMy+H/G5AlIaUUpRoFU0lAWgWR0C1PT75AQg+dX2UKGgGaAloD0MI7ncoCvSvb0CUhpRSlGgVTSoBaBZHQLU9PX5WRzR1fZQoaAZoCWgPQwgrpWd6yUByQJSGlFKUaBVNRgFoFkdAtT0+ASWZ7XV9lChoBmgJaA9DCArys5FrdW5AlIaUUpRoFU2QAWgWR0C1PVDvNNahdX2UKGgGaAloD0MIebKbGb1+cUCUhpRSlGgVS8RoFkdAtT1WVv/BFnV9lChoBmgJaA9DCEdy+Q8pMXBAlIaUUpRoFU0yAWgWR0C1PV4bKifydX2UKGgGaAloD0MIu5o8ZTV5TECUhpRSlGgVS4RoFkdAtT3uys0YTHV9lChoBmgJaA9DCLezrzxIKnFAlIaUUpRoFUu6aBZHQLU+phw2l2x1fZQoaAZoCWgPQwgt6pPc4R5zQJSGlFKUaBVNSgFoFkdAtT75DhLoOnV9lChoBmgJaA9DCOviNhpA229AlIaUUpRoFU15AWgWR0C1P6ERjBl+dX2UKGgGaAloD0MItFVJZB9QcECUhpRSlGgVTQUBaBZHQLU/p/gBLf11fZQoaAZoCWgPQwhA3UCB965vQJSGlFKUaBVN/AFoFkdAtT+7oJRfnnV9lChoBmgJaA9DCEJdpFCWwW5AlIaUUpRoFU2PAWgWR0C1P7y7f51vdX2UKGgGaAloD0MIo5Ol1vt0b0CUhpRSlGgVS+BoFkdAtT/qvLX+VHV9lChoBmgJaA9DCEuuYvFbCXJAlIaUUpRoFU0lAWgWR0C1P+h9gF5fdX2UKGgGaAloD0MIoBUYsjrmbkCUhpRSlGgVS/xoFkdAtUBAKqn3tnV9lChoBmgJaA9DCIBEEyhiQ29AlIaUUpRoFUu9aBZHQLVAVH9WIXV1fZQoaAZoCWgPQwj5npEIjc9wQJSGlFKUaBVNBQFoFkdAtUBqNS619nV9lChoBmgJaA9DCI0o7Q0+y3BAlIaUUpRoFU0JAWgWR0C1QHyPuG9IdX2UKGgGaAloD0MIuoEC7+T6VECUhpRSlGgVS3NoFkdAtUEZFkQPJHV9lChoBmgJaA9DCDzYYrcPinBAlIaUUpRoFU1ZAWgWR0C1QVsvmHQAdX2UKGgGaAloD0MI0hxZ+aWIcUCUhpRSlGgVS9FoFkdAtUKue2/i53V9lChoBmgJaA9DCMAF2bI8cXBAlIaUUpRoFU2yAWgWR0C1QuZEpiI+dX2UKGgGaAloD0MIXRYTm884cECUhpRSlGgVS7poFkdAtULnS3LFGXV9lChoBmgJaA9DCKCnAYMkk3BAlIaUUpRoFU05AWgWR0C1QuWPT5O8dX2UKGgGaAloD0MIH6LRHcTib0CUhpRSlGgVS91oFkdAtULm1v2oN3V9lChoBmgJaA9DCCmWW1qNRW5AlIaUUpRoFUvvaBZHQLVC99Dx9Xt1fZQoaAZoCWgPQwj1ukVgbFZyQJSGlFKUaBVL+WgWR0C1Qwc50bLmdX2UKGgGaAloD0MIpl63CAxxcECUhpRSlGgVTTMBaBZHQLVDJ1g6U7l1fZQoaAZoCWgPQwglBRbAlDJvQJSGlFKUaBVN2AFoFkdAtUM4iaAnUnV9lChoBmgJaA9DCJRnXg5753BAlIaUUpRoFU0SAWgWR0C1Q1Cj1wo9dX2UKGgGaAloD0MIVTNrKaDKcECUhpRSlGgVS/JoFkdAtUN1VdX1anVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312500, "buffer_size": 100000, "batch_size": 128, "learning_starts": 0, "tau": 1.0, "gamma": 0.99, "gradient_steps": 4, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n    Replay buffer used in off-policy algorithms like SAC/TD3.\n\n    :param buffer_size: Max number of element in the buffer\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param device: PyTorch device\n    :param n_envs: Number of parallel environments\n    :param optimize_memory_usage: Enable a memory efficient variant\n        of the replay buffer which reduces by almost a factor two the memory used,\n        at a cost of more complexity.\n        See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n        and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n        Cannot be used in combination with handle_timeout_termination.\n    :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n        separately and treat the task as infinite horizon task.\n        https://github.com/DLR-RM/stable-baselines3/issues/284\n    ", "__init__": "<function ReplayBuffer.__init__ at 0x000001DB36357430>", "add": "<function ReplayBuffer.add at 0x000001DB363574C0>", "sample": "<function ReplayBuffer.sample at 0x000001DB36357550>", "_get_samples": "<function ReplayBuffer._get_samples at 0x000001DB363575E0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001DB36232AC0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.08, "target_update_interval": 1, "_n_calls": 312500, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIx1QzpcUHJvZ3JhbSBGaWxlcyAoeDg2KVxNaWNyb3NvZnQgVmlzdWFsIFN0dWRpb1xTaGFyZWRcUHl0aG9uMzlfNjRcbGliXHNpdGUtcGFja2FnZXNcc3RhYmxlX2Jhc2VsaW5lczNcY29tbW9uXHV0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHClSlGgcKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCJ9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoCowIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgudYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDZHP7R64UeuFHuFlFKUaDZHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cpu", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}