File size: 2,614 Bytes
47c7a97
 
 
 
cd17ac8
 
47c7a97
 
 
cd17ac8
 
47c7a97
 
 
 
 
 
 
 
 
 
cd17ac8
47c7a97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
- trl
- dpo
base_model: microsoft/phi-2
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: phi-2-gpo-renew2-b0.001-i1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# phi-2-gpo-renew2-b0.001-i1

This model is a fine-tuned version of [DUAL-GPO/phi-2-gpo-renew2-b0.001-i0](https://huggingface.co/DUAL-GPO/phi-2-gpo-renew2-b0.001-i0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0538
- Rewards/chosen: 0.0010
- Rewards/rejected: 0.0012
- Rewards/accuracies: 0.4290
- Rewards/margins: -0.0002
- Logps/rejected: -366.0280
- Logps/chosen: -395.2844
- Logits/rejected: -0.7463
- Logits/chosen: -0.8436

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.1204        | 0.32  | 100  | -0.8372       | -0.7448         | -396.1279    | -367.0282      | 0.0537          | 0.4495             | 0.0002         | -0.0000         | 0.0002           |
| 0.1673        | 0.64  | 200  | 0.0538        | 0.0013          | 0.0015       | 0.4305         | -0.0002         | -365.7495          | -395.0410      | -0.7569         | -0.8518          |
| 0.1395        | 0.96  | 300  | 0.0538        | 0.0010          | 0.0012       | 0.4395         | -0.0002         | -365.9886          | -395.3006      | -0.7587         | -0.8541          |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2