File size: 16,616 Bytes
340c8dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

"""

This code is adapted from AllenAI's Longformer:
    https://github.com/allenai/longformer/

"""
from typing import List
import math
import torch
from torch import nn
import torch.nn.functional as F
from .diagonaled_mm_tvm import diagonaled_mm as diagonaled_mm_tvm, mask_invalid_locations
from .sliding_chunks import sliding_chunks_matmul_qk, sliding_chunks_matmul_pv
from .sliding_chunks import sliding_chunks_no_overlap_matmul_qk, sliding_chunks_no_overlap_matmul_pv
from transformers.models.roberta.modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM


class Longformer(RobertaModel):
    def __init__(self, config):
        super(Longformer, self).__init__(config)
        if config.attention_mode == 'n2':
            pass  # do nothing, use BertSelfAttention instead
        else:
            for i, layer in enumerate(self.encoder.layer):
                layer.attention.self = LongformerSelfAttention(config, layer_id=i)


class LongformerForMaskedLM(RobertaForMaskedLM):
    def __init__(self, config):
        super(LongformerForMaskedLM, self).__init__(config)
        if config.attention_mode == 'n2':
            pass  # do nothing, use BertSelfAttention instead
        else:
            for i, layer in enumerate(self.roberta.encoder.layer):
                layer.attention.self = LongformerSelfAttention(config, layer_id=i)


class LongformerConfig(RobertaConfig):
    def __init__(self, attention_window: List[int] = None, attention_dilation: List[int] = None,
                 autoregressive: bool = False, attention_mode: str = 'sliding_chunks', **kwargs):
        """
        Args:
            attention_window: list of attention window sizes of length = number of layers.
                window size = number of attention locations on each side.
                For an affective window size of 512, use `attention_window=[256]*num_layers`
                which is 256 on each side.
            attention_dilation: list of attention dilation of length = number of layers.
                attention dilation of `1` means no dilation.
            autoregressive: do autoregressive attention or have attention of both sides
            attention_mode: 'n2' for regular n^2 self-attention, 'tvm' for TVM implemenation of Longformer
                selfattention, 'sliding_chunks' for another implementation of Longformer selfattention
        """
        super().__init__(**kwargs)
        self.attention_window = attention_window
        self.attention_dilation = attention_dilation
        self.autoregressive = autoregressive
        self.attention_mode = attention_mode
        assert self.attention_mode in ['tvm', 'sliding_chunks', 'n2', 'sliding_chunks_no_overlap']


class LongformerSelfAttention(nn.Module):
    def __init__(self, config, layer_id):
        super(LongformerSelfAttention, self).__init__()
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads))
        self.num_heads = config.num_attention_heads
        self.head_dim = int(config.hidden_size / config.num_attention_heads)
        self.embed_dim = config.hidden_size

        self.query = nn.Linear(config.hidden_size, self.embed_dim)
        self.key = nn.Linear(config.hidden_size, self.embed_dim)
        self.value = nn.Linear(config.hidden_size, self.embed_dim)

        self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
        self.value_global = nn.Linear(config.hidden_size, self.embed_dim)

        self.dropout = config.attention_probs_dropout_prob

        self.layer_id = layer_id
        self.attention_window = config.attention_window[self.layer_id]
        self.attention_dilation = config.attention_dilation[self.layer_id]
        self.attention_mode = config.attention_mode
        self.autoregressive = config.autoregressive
        assert self.attention_window > 0
        assert self.attention_dilation > 0
        assert self.attention_mode in ['tvm', 'sliding_chunks', 'sliding_chunks_no_overlap']
        if self.attention_mode in ['sliding_chunks', 'sliding_chunks_no_overlap']:
            assert not self.autoregressive  # not supported
            assert self.attention_dilation == 1  # dilation is not supported

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        '''
        The `attention_mask` is changed in `BertModel.forward` from 0, 1, 2 to
            -ve: no attention
              0: local attention
            +ve: global attention
        '''
        assert encoder_hidden_states is None, "`encoder_hidden_states` is not supported and should be None"
        assert encoder_attention_mask is None, "`encoder_attention_mask` is not supported and should be None"

        if attention_mask is not None:
            key_padding_mask = attention_mask < 0
            extra_attention_mask = attention_mask > 0
            remove_from_windowed_attention_mask = attention_mask != 0

            num_extra_indices_per_batch = extra_attention_mask.long().sum(dim=1)
            max_num_extra_indices_per_batch = num_extra_indices_per_batch.max()
            if max_num_extra_indices_per_batch <= 0:
                extra_attention_mask = None
            else:
                # To support the case of variable number of global attention in the rows of a batch,
                # we use the following three selection masks to select global attention embeddings
                # in a 3d tensor and pad it to `max_num_extra_indices_per_batch`
                # 1) selecting embeddings that correspond to global attention
                extra_attention_mask_nonzeros = extra_attention_mask.nonzero(as_tuple=True)
                zero_to_max_range = torch.arange(0, max_num_extra_indices_per_batch,
                                                 device=num_extra_indices_per_batch.device)
                # mask indicating which values are actually going to be padding
                selection_padding_mask = zero_to_max_range < num_extra_indices_per_batch.unsqueeze(dim=-1)
                # 2) location of the non-padding values in the selected global attention
                selection_padding_mask_nonzeros = selection_padding_mask.nonzero(as_tuple=True)
                # 3) location of the padding values in the selected global attention
                selection_padding_mask_zeros = (selection_padding_mask == 0).nonzero(as_tuple=True)
        else:
            remove_from_windowed_attention_mask = None
            extra_attention_mask = None
            key_padding_mask = None

        hidden_states = hidden_states.transpose(0, 1)
        seq_len, bsz, embed_dim = hidden_states.size()
        assert embed_dim == self.embed_dim
        q = self.query(hidden_states)
        k = self.key(hidden_states)
        v = self.value(hidden_states)
        q /= math.sqrt(self.head_dim)

        q = q.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        k = k.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        # attn_weights = (bsz, seq_len, num_heads, window*2+1)
        if self.attention_mode == 'tvm':
            q = q.float().contiguous()
            k = k.float().contiguous()
            attn_weights = diagonaled_mm_tvm(q, k, self.attention_window, self.attention_dilation, False, 0, False)
        elif self.attention_mode == "sliding_chunks":
            attn_weights = sliding_chunks_matmul_qk(q, k, self.attention_window, padding_value=0)
        elif self.attention_mode == "sliding_chunks_no_overlap":
            attn_weights = sliding_chunks_no_overlap_matmul_qk(q, k, self.attention_window, padding_value=0)
        else:
            raise False
        mask_invalid_locations(attn_weights, self.attention_window, self.attention_dilation, False)
        if remove_from_windowed_attention_mask is not None:
            # This implementation is fast and takes very little memory because num_heads x hidden_size = 1
            # from (bsz x seq_len) to (bsz x seq_len x num_heads x hidden_size)
            remove_from_windowed_attention_mask = remove_from_windowed_attention_mask.unsqueeze(dim=-1).unsqueeze(dim=-1)
            # cast to float/half then replace 1's with -inf
            float_mask = remove_from_windowed_attention_mask.type_as(q).masked_fill(remove_from_windowed_attention_mask, -10000.0)
            repeat_size = 1 if isinstance(self.attention_dilation, int) else len(self.attention_dilation)
            float_mask = float_mask.repeat(1, 1, repeat_size, 1)
            ones = float_mask.new_ones(size=float_mask.size())  # tensor of ones
            # diagonal mask with zeros everywhere and -inf inplace of padding
            if self.attention_mode == 'tvm':
                d_mask = diagonaled_mm_tvm(ones, float_mask, self.attention_window, self.attention_dilation, False, 0, False)
            elif self.attention_mode == "sliding_chunks":
                d_mask = sliding_chunks_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)
            elif self.attention_mode == "sliding_chunks_no_overlap":
                d_mask = sliding_chunks_no_overlap_matmul_qk(ones, float_mask, self.attention_window, padding_value=0)

            attn_weights += d_mask
        assert list(attn_weights.size())[:3] == [bsz, seq_len, self.num_heads]
        assert attn_weights.size(dim=3) in [self.attention_window * 2 + 1, self.attention_window * 3]

        # the extra attention
        if extra_attention_mask is not None:
            selected_k = k.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_k[selection_padding_mask_nonzeros] = k[extra_attention_mask_nonzeros]
            # (bsz, seq_len, num_heads, max_num_extra_indices_per_batch)
            selected_attn_weights = torch.einsum('blhd,bshd->blhs', (q, selected_k))
            selected_attn_weights[selection_padding_mask_zeros[0], :, :, selection_padding_mask_zeros[1]] = -10000
            # concat to attn_weights
            # (bsz, seq_len, num_heads, extra attention count + 2*window+1)
            attn_weights = torch.cat((selected_attn_weights, attn_weights), dim=-1)
        attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
        if key_padding_mask is not None:
            # softmax sometimes inserts NaN if all positions are masked, replace them with 0
            attn_weights_float = torch.masked_fill(attn_weights_float, key_padding_mask.unsqueeze(-1).unsqueeze(-1), 0.0)
        attn_weights = attn_weights_float.type_as(attn_weights)
        attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
        v = v.view(seq_len, bsz, self.num_heads, self.head_dim).transpose(0, 1)
        attn = 0
        if extra_attention_mask is not None:
            selected_attn_probs = attn_probs.narrow(-1, 0, max_num_extra_indices_per_batch)
            selected_v = v.new_zeros(bsz, max_num_extra_indices_per_batch, self.num_heads, self.head_dim)
            selected_v[selection_padding_mask_nonzeros] = v[extra_attention_mask_nonzeros]
            # use `matmul` because `einsum` crashes sometimes with fp16
            # attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
            attn = torch.matmul(selected_attn_probs.transpose(1, 2), selected_v.transpose(1, 2).type_as(selected_attn_probs)).transpose(1, 2)
            attn_probs = attn_probs.narrow(-1, max_num_extra_indices_per_batch, attn_probs.size(-1) - max_num_extra_indices_per_batch).contiguous()

        if self.attention_mode == 'tvm':
            v = v.float().contiguous()
            attn += diagonaled_mm_tvm(attn_probs, v, self.attention_window, self.attention_dilation, True, 0, False)
        elif self.attention_mode == "sliding_chunks":
            attn += sliding_chunks_matmul_pv(attn_probs, v, self.attention_window)
        elif self.attention_mode == "sliding_chunks_no_overlap":
            attn += sliding_chunks_no_overlap_matmul_pv(attn_probs, v, self.attention_window)
        else:
            raise False

        attn = attn.type_as(hidden_states)
        assert list(attn.size()) == [bsz, seq_len, self.num_heads, self.head_dim]
        attn = attn.transpose(0, 1).reshape(seq_len, bsz, embed_dim).contiguous()

        # For this case, we'll just recompute the attention for these indices
        # and overwrite the attn tensor. TODO: remove the redundant computation
        if extra_attention_mask is not None:
            selected_hidden_states = hidden_states.new_zeros(max_num_extra_indices_per_batch, bsz, embed_dim)
            selected_hidden_states[selection_padding_mask_nonzeros[::-1]] = hidden_states[extra_attention_mask_nonzeros[::-1]]

            q = self.query_global(selected_hidden_states)
            k = self.key_global(hidden_states)
            v = self.value_global(hidden_states)
            q /= math.sqrt(self.head_dim)

            q = q.contiguous().view(max_num_extra_indices_per_batch, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # (bsz*self.num_heads, max_num_extra_indices_per_batch, head_dim)
            k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # bsz * self.num_heads, seq_len, head_dim)
            v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim).transpose(0, 1)  # bsz * self.num_heads, seq_len, head_dim)
            attn_weights = torch.bmm(q, k.transpose(1, 2))
            assert list(attn_weights.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len]

            attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
            attn_weights[selection_padding_mask_zeros[0], :, selection_padding_mask_zeros[1], :] = -10000.0
            if key_padding_mask is not None:
                attn_weights = attn_weights.masked_fill(
                    key_padding_mask.unsqueeze(1).unsqueeze(2),
                    -10000.0,
                )
            attn_weights = attn_weights.view(bsz * self.num_heads, max_num_extra_indices_per_batch, seq_len)
            attn_weights_float = F.softmax(attn_weights, dim=-1, dtype=torch.float32)  # use fp32 for numerical stability
            attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p=self.dropout, training=self.training)
            selected_attn = torch.bmm(attn_probs, v)
            assert list(selected_attn.size()) == [bsz * self.num_heads, max_num_extra_indices_per_batch, self.head_dim]

            selected_attn_4d = selected_attn.view(bsz, self.num_heads, max_num_extra_indices_per_batch, self.head_dim)
            nonzero_selected_attn = selected_attn_4d[selection_padding_mask_nonzeros[0], :, selection_padding_mask_nonzeros[1]]
            attn[extra_attention_mask_nonzeros[::-1]] = nonzero_selected_attn.view(len(selection_padding_mask_nonzeros[0]), -1).type_as(hidden_states)

        context_layer = attn.transpose(0, 1) # attn shape: (seq_len, bsz, embed_dim), context_layer shape: (bsz, seq_len, embed_dim)
        if output_attentions:
            if extra_attention_mask is not None:
                # With global attention, return global attention probabilities only
                # batch_size x num_heads x max_num_global_attention_tokens x sequence_length
                # which is the attention weights from tokens with global attention to all tokens
                # It doesn't not return local attention
                # In case of variable number of global attantion in the rows of a batch,
                # attn_weights are padded with -10000.0 attention scores
                attn_weights = attn_weights.view(bsz, self.num_heads, max_num_extra_indices_per_batch, seq_len)
            else:
                # without global attention, return local attention probabilities
                # batch_size x num_heads x sequence_length x window_size
                # which is the attention weights of every token attending to its neighbours
                attn_weights = attn_weights.permute(0, 2, 1, 3)
        outputs = (context_layer, attn_weights) if output_attentions else (context_layer,)
        return outputs