File size: 2,061 Bytes
48c0007
 
 
 
 
 
 
 
cfadd69
48c0007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
base_model: vinai/phobert-large
model-index:
- name: disfluency-large
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# disfluency-large

This model is a fine-tuned version of [vinai/phobert-large](https://huggingface.co/vinai/phobert-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0438
- Precision: 0.9698
- Recall: 0.9663
- F1: 0.9681
- Accuracy: 0.9921

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 140  | 0.0422          | 0.9651    | 0.9627 | 0.9639 | 0.9902   |
| No log        | 2.0   | 280  | 0.0315          | 0.9718    | 0.9730 | 0.9724 | 0.9923   |
| No log        | 3.0   | 420  | 0.2221          | 0.8079    | 0.7530 | 0.7795 | 0.9355   |
| 0.024         | 4.0   | 560  | 0.0379          | 0.9693    | 0.9675 | 0.9684 | 0.9926   |
| 0.024         | 5.0   | 700  | 0.0499          | 0.9657    | 0.9639 | 0.9648 | 0.9905   |
| 0.024         | 6.0   | 840  | 0.0388          | 0.9688    | 0.9688 | 0.9688 | 0.9925   |
| 0.024         | 7.0   | 980  | 0.0438          | 0.9698    | 0.9663 | 0.9681 | 0.9921   |


### Framework versions

- Transformers 4.27.4
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3