File size: 13,785 Bytes
6a6b31a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ac0b4c940d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ac0b4c94160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ac0b4c941f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ac0b4c94280>", "_build": "<function ActorCriticPolicy._build at 0x7ac0b4c94310>", "forward": "<function ActorCriticPolicy.forward at 0x7ac0b4c943a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ac0b4c94430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ac0b4c944c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ac0b4c94550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ac0b4c945e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ac0b4c94670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ac0b4c94700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ac0b4c90440>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718623220728860444, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAICThr0UJJ66xbp9unKN3zXjlBK6PiqSOQAAgD8AAIA/GocJvkih/jmcxqi4PnzsNY6HCLxq3sc3AACAPwAAgD+aDuu8rsGRuvYcZzkzaFk0xZqruiIGhrgAAIA/AACAPzMKvD0UrqG6xVpduqZ5ArWAEgK7EG5+OQAAgD8AAIA/88nCvUeFpD8gpda+/EKNvour9L0+ZUK+AAAAAAAAAABm3KS9mM6UP9pVgL5NsKG+5pS9vZVgf70AAAAAAAAAAJvlh74xMSs/ZQdzvJv9oL6EM4y96qCCuwAAAAAAAAAAAF+zPKjltz/68q8+0D//PawQb7pNTKo9AAAAAAAAAADND2y91gTAPyeLib73G2S98bj6vRI2M74AAAAAAAAAACC1Hr4XHlQ/0sIGvOXBlL5WOcW9hQDiPQAAAAAAAAAAZuq1O0hLorp6qQi7r6LDN1obmrl9XrK2AACAPwAAgD9zBto9hWPhuc7cX7zjAKc5e5BYOhzjG7kAAIA/AACAP6j38L5bmxE/GsMVPjbKVr6yPO+9BbB1PQAAAAAAAAAAZixWPeEom7oHE7S6viZZtgkO1LrVFME1AACAPwAAgD8A4JY6SNObuj5emTvzHzm2/lmOOlH6sLoAAIA/AACAP2YcDzx7QoW6UamUOgts5zWUJXg6ckndNAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGH9REnb7CWMAWyUTegDjAF0lEdAkG69EgGKRHV9lChoBkdAZBih0yP+42gHTegDaAhHQJBzK+Cbtqp1fZQoaAZHQGH0STINmUZoB03oA2gIR0CQdRNS619fdX2UKGgGR0Bh1Q2dd3SsaAdN6ANoCEdAkHfkWRA8jnV9lChoBkdAYGepBHCoCWgHTegDaAhHQJB6rC0ngHh1fZQoaAZHQGFMavRqoIhoB03oA2gIR0CQfOsI3R5UdX2UKGgGR0BjoTXjENvwaAdN6ANoCEdAkH3EeuFHrnV9lChoBkfADTSuQp4KQmgHS/NoCEdAkH3h6rvLHXV9lChoBkdAZ1uW4Vh1DGgHTegDaAhHQJCAfposZpB1fZQoaAZHQGSPXkgfU4JoB03oA2gIR0CQhHsXBP9DdX2UKGgGR0BgPrR4QjD9aAdN6ANoCEdAkJ9u1WsBAHV9lChoBkdAZiy6NlyzX2gHTegDaAhHQJCikxoIv8J1fZQoaAZHQGEUzErGza9oB03oA2gIR0CQo8RXwLE2dX2UKGgGR0BfcHR9gF5faAdN6ANoCEdAkKRHEqDsdHV9lChoBkdAZA/7AtWdVmgHTegDaAhHQJCkSFev6j51fZQoaAZHQGNa8IZ62ORoB03oA2gIR0CQstKbrkbQdX2UKGgGR0BlSOCNCJGfaAdN6ANoCEdAkLVhYigTRXV9lChoBkdAZdiouwosqmgHTegDaAhHQJC/RI6Kcd51fZQoaAZHQF9Io2XLNfRoB03oA2gIR0CQwQJF9a2XdX2UKGgGR0BnkSPZIxxlaAdN6ANoCEdAkMQyDM/yG3V9lChoBkdAY3iO6unuRmgHTegDaAhHQJDH3fYSQHR1fZQoaAZHQGG2VklNUOxoB03oA2gIR0CQytxHoX9BdX2UKGgGR0BmSvKwIMScaAdN6ANoCEdAkMuctCiRGXV9lChoBkdAXHSQjlgc+GgHTegDaAhHQJDLvF+/gzh1fZQoaAZHQGHFeX7cfvFoB03oA2gIR0CQzw9jgAIZdX2UKGgGR0Be3G3z+WGAaAdN6ANoCEdAkNK8KCxu9HV9lChoBkdAYSZlCkXUIGgHTegDaAhHQJDZbuOS4e91fZQoaAZHQGFgplBhQWNoB03oA2gIR0CQ7lAq/dqMdX2UKGgGR0BhzZcqvvBraAdN6ANoCEdAkO+TbWVeKXV9lChoBkdAZTvXRw6ySmgHTegDaAhHQJDwJGTcIqt1fZQoaAZHQGMfcHnlnyxoB03oA2gIR0CQ8CT6BRQ8dX2UKGgGR0Az5BEa2nbZaAdL4WgIR0CQ8NSmqHXVdX2UKGgGR0Buzw0TDfm+aAdNqwJoCEdAkP/LHAAQx3V9lChoBkdAYucs/Y8MeGgHTegDaAhHQJECzwx33Yd1fZQoaAZHQGK9fdyksSVoB03oA2gIR0CRBWdELH+7dX2UKGgGR0BjEJEMLF4taAdN6ANoCEdAkQ9LbQC0W3V9lChoBkdAMhQxFiKBNGgHS+FoCEdAkRDcbWEsa3V9lChoBkdAYniXTmW+oWgHTegDaAhHQJERLtJFspJ1fZQoaAZHwCVp+nZTQ3RoB00FAWgIR0CRFbYrrgO0dX2UKGgGR0BjKq1eBxxUaAdN6ANoCEdAkRcqmwaBJHV9lChoBkdAYZyV7hNucmgHTegDaAhHQJEZjCGetjl1fZQoaAZHQGXXHTI/7i1oB03oA2gIR0CRGi2dd3SsdX2UKGgGR0Bj7HNZ/0/XaAdN6ANoCEdAkRpJ2ll9SnV9lChoBkdAZNGuRLbpNmgHTegDaAhHQJEc8tDlYEJ1fZQoaAZHQGEND9GZuyhoB03oA2gIR0CRKPV7x/d7dX2UKGgGR0BjxuZssQNDaAdN6ANoCEdAkUIrWEsasXV9lChoBkdAYAeT8pCrtGgHTegDaAhHQJFDhPVNHpd1fZQoaAZHQGSAYL1EmY1oB03oA2gIR0CRRCDcM3IddX2UKGgGR0BmWaya/h2oaAdN6ANoCEdAkUQjKs+3Y3V9lChoBkdAZB1/Ot4iYGgHTegDaAhHQJFE6cJ+lTF1fZQoaAZHQGXYwN0/4ZdoB03oA2gIR0CRUeB9Tgl4dX2UKGgGR0BlAzrRjSXuaAdN6ANoCEdAkWIdg0CRwXV9lChoBkdAZmyUbkwN9mgHTegDaAhHQJFkGs90Rvp1fZQoaAZHQGUiWjwhGH5oB03oA2gIR0CRZIqIrOJMdX2UKGgGR0BkkwLsrupkaAdN6ANoCEdAkWn9+PRzBHV9lChoBkdAXsp1Oj7AL2gHTegDaAhHQJFronogV451fZQoaAZHQGi0ibDuSfVoB03oA2gIR0CRbbBLf1pTdX2UKGgGR0BjpzCWNWELaAdN6ANoCEdAkW43O8kD6nV9lChoBkdAYxdicXm/32gHTegDaAhHQJFuT6sQumJ1fZQoaAZHQGOD500WM0hoB03oA2gIR0CRcGzpX6qLdX2UKGgGR0Bhvur+5vtMaAdN6ANoCEdAkXoB1klNUXV9lChoBkdAZlueQuEmIGgHTegDaAhHQJF9ArJ8v251fZQoaAZHQGYPhYFJQLxoB03oA2gIR0CRj6z19ORDdX2UKGgGR0BkTsNz8xbjaAdN6ANoCEdAkZA1qrR0EHV9lChoBkdAYzDzg/C66WgHTegDaAhHQJGQNlNDc/N1fZQoaAZHQGU+g6dUbUBoB03oA2gIR0CRkOIOpbUxdX2UKGgGR0BvLizHCGeuaAdNnQJoCEdAkZmSgGr0a3V9lChoBkdAYS07jDKoymgHTegDaAhHQJGgUslLOA11fZQoaAZHQGC7Y6GQCCBoB03oA2gIR0CRsBJRfnfVdX2UKGgGR0Bit/tMPBi1aAdN6ANoCEdAkbBgRK6FunV9lChoBkdAZLSz3RG+bmgHTegDaAhHQJG0g7o0Q9R1fZQoaAZHQGP8GJWNm19oB03oA2gIR0CRtdNJvo/zdX2UKGgGR0BhEgSeyzHCaAdN6ANoCEdAkbfm43FUAHV9lChoBkdAYMNTGYKIBWgHTegDaAhHQJG4dKAavRt1fZQoaAZHQGV50mD15B1oB03oA2gIR0CRuI7NjbztdX2UKGgGR0BgLyf6GgzyaAdN6ANoCEdAkbrNlRP423V9lChoBkdANleFlCkXUGgHS/RoCEdAkcOU0FbFCXV9lChoBkdAY4qmReTmn2gHTegDaAhHQJHEpz90ihZ1fZQoaAZHQCzP7BO58ShoB0v9aAhHQJHEuhHskY51fZQoaAZHQGKHM8ox59poB03oA2gIR0CRx7TB68g7dX2UKGgGR0BjuVRLsa86aAdN6ANoCEdAkckSnxaxHHV9lChoBkdAYywv114gR2gHTegDaAhHQJHeMqtozvZ1fZQoaAZHQGC8v1+RYA9oB03oA2gIR0CR3jQLux8ldX2UKGgGR0Bi7JlSS/0vaAdN6ANoCEdAkd7VGgBcRnV9lChoBkdAZ7ZktEofCGgHTegDaAhHQJHlDqv/zat1fZQoaAZHQGLY6LOzIFNoB03oA2gIR0CR6bslsxfwdX2UKGgGR0Bv6ST+vQnhaAdNjgFoCEdAkfDpqVQhwHV9lChoBkdAYktPqs2ehGgHTegDaAhHQJH5vR7Z39t1fZQoaAZHQGSaFfAsTWZoB03oA2gIR0CR+gzwMH8kdX2UKGgGR0BgfpYFJQLvaAdN6ANoCEdAkf8rW7OE/XV9lChoBkdAXiU6FM7EHmgHTegDaAhHQJIA/fsNUfh1fZQoaAZHQGJF863iJfpoB03oA2gIR0CSBOjOcDr7dX2UKGgGR0BlpMAcT8HfaAdN6ANoCEdAkghMCYCyQnV9lChoBkdAZmbPQfIS12gHTegDaAhHQJISDSYw7DF1fZQoaAZHQGAMHIZIg/1oB03oA2gIR0CSEx8l5WzXdX2UKGgGR0BgG/s/pt78aAdN6ANoCEdAkhMtxIatLnV9lChoBkdAZN/P8hs672gHTegDaAhHQJIW/544ZMt1fZQoaAZHQGPFU7Sy+pRoB03oA2gIR0CSF4E5hjOLdX2UKGgGR0Bc0PLkjopyaAdN6ANoCEdAkheBT0g8sHV9lChoBkdAYoashgVoH2gHTegDaAhHQJIYKxptaZB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}