Guanzheng commited on
Commit
3021188
1 Parent(s): 54314d4

Rename configuration_clex.py to configuration_llama_clex.py

Browse files
configuration_clex.py → configuration_llama_clex.py RENAMED
@@ -34,11 +34,8 @@ class CLEXLlamaConfig(LlamaConfig):
34
  This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
35
  model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
36
  defaults will yield a similar configuration to that of the LLaMA-7B.
37
-
38
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
  documentation from [`PretrainedConfig`] for more information.
40
-
41
-
42
  Args:
43
  vocab_size (`int`, *optional*, defaults to 32000):
44
  Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
@@ -86,18 +83,13 @@ class CLEXLlamaConfig(LlamaConfig):
86
  these scaling strategies behave:
87
  https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
88
  experimental feature, subject to breaking API changes in future versions.
89
-
90
  Example:
91
-
92
  ```python
93
  >>> from transformers import LlamaModel, LlamaConfig
94
-
95
  >>> # Initializing a LLaMA llama-7b style configuration
96
  >>> configuration = LlamaConfig()
97
-
98
  >>> # Initializing a model from the llama-7b style configuration
99
  >>> model = LlamaModel(configuration)
100
-
101
  >>> # Accessing the model configuration
102
  >>> configuration = model.config
103
  ```"""
@@ -118,7 +110,6 @@ class CLEXLlamaConfig(LlamaConfig):
118
  self.log_scale = log_scale
119
  self.rope_theta = 10000
120
  self.max_position_embeddings = 4096
121
- self.data_length = 4096
122
  self.rope_scaling = rope_scaling
123
  self._rope_scaling_validation()
124
 
 
34
  This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
35
  model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
36
  defaults will yield a similar configuration to that of the LLaMA-7B.
 
37
  Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
  documentation from [`PretrainedConfig`] for more information.
 
 
39
  Args:
40
  vocab_size (`int`, *optional*, defaults to 32000):
41
  Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
 
83
  these scaling strategies behave:
84
  https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
85
  experimental feature, subject to breaking API changes in future versions.
 
86
  Example:
 
87
  ```python
88
  >>> from transformers import LlamaModel, LlamaConfig
 
89
  >>> # Initializing a LLaMA llama-7b style configuration
90
  >>> configuration = LlamaConfig()
 
91
  >>> # Initializing a model from the llama-7b style configuration
92
  >>> model = LlamaModel(configuration)
 
93
  >>> # Accessing the model configuration
94
  >>> configuration = model.config
95
  ```"""
 
110
  self.log_scale = log_scale
111
  self.rope_theta = 10000
112
  self.max_position_embeddings = 4096
 
113
  self.rope_scaling = rope_scaling
114
  self._rope_scaling_validation()
115