Create clex_layer.py
Browse files- clex_layer.py +137 -0
clex_layer.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchdiffeq import odeint
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
class ODELinear(nn.Module):
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
dim: int,
|
13 |
+
factor,
|
14 |
+
**kwargs
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim).to(torch.float32))
|
18 |
+
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2).to(torch.float32))
|
19 |
+
self.dim = dim
|
20 |
+
self.act = torch.nn.SiLU()
|
21 |
+
self.reset_parameters()
|
22 |
+
|
23 |
+
def reset_parameters(self):
|
24 |
+
nn.init.kaiming_uniform_(self.ode_up_proj, a=math.sqrt(5))
|
25 |
+
nn.init.zeros_(self.ode_down_proj)
|
26 |
+
|
27 |
+
def get_time_embedding(self, t, base=10000, device='cuda', dtype=torch.float32):
|
28 |
+
if t < 1:
|
29 |
+
alpha = 1
|
30 |
+
else:
|
31 |
+
alpha = 2*t-1
|
32 |
+
ntk_base = base * alpha ** (self.dim / (self.dim-2))
|
33 |
+
ntk_inv_freq = 1.0 / (ntk_base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
|
34 |
+
index = torch.arange(0, self.dim, 2, dtype=torch.float32).to(device)
|
35 |
+
delta_ntk_freq = -2*index/(self.dim-2) * 1 / (base ** (index/self.dim) * (alpha ** (index/(self.dim-2) + 1)))
|
36 |
+
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
|
37 |
+
|
38 |
+
def forward(self, t, x: torch.Tensor):
|
39 |
+
delta_time, time = self.get_time_embedding(t, device=x.device, dtype=x.dtype)
|
40 |
+
x = x + torch.log(time)
|
41 |
+
time_embed = delta_time / time
|
42 |
+
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float() + time_embed
|
43 |
+
return delta_inv_freq
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
48 |
+
|
49 |
+
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.max_t = rope_scaling["max_factor"]
|
53 |
+
self.dim = dim
|
54 |
+
self.max_position_embeddings = max_position_embeddings
|
55 |
+
self.base = base
|
56 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
57 |
+
self.register_buffer("inv_freq", inv_freq)
|
58 |
+
|
59 |
+
self.proj_func = ODELinear(dim, rope_scaling["param_factor"])
|
60 |
+
self.rope_cached = None
|
61 |
+
self.max_t_cached = 0
|
62 |
+
self.freq_cached = None
|
63 |
+
self.time_dt = 0.01
|
64 |
+
self.ode_args = {
|
65 |
+
"method": "rk4",
|
66 |
+
"options": {"step_size": self.time_dt},
|
67 |
+
}
|
68 |
+
|
69 |
+
def sample_random_times(self, max_t, device):
|
70 |
+
return torch.randint(2, max_t, (1,), dtype = torch.long, device=device)
|
71 |
+
|
72 |
+
def get_random_position_ids(self, n=2048, max=8192):
|
73 |
+
positions = torch.randperm(max)[:n].sort().values
|
74 |
+
# positions = positions.to(device=device)
|
75 |
+
return positions
|
76 |
+
|
77 |
+
|
78 |
+
def get_continuous_freq(self, time_grid, ex_positions, device):
|
79 |
+
solution = odeint(
|
80 |
+
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
|
81 |
+
)
|
82 |
+
if time_grid.size(0) == 2:
|
83 |
+
training
|
84 |
+
scale_inv_freq = torch.exp(solution[1])
|
85 |
+
# print(time_grid[1].tolist(), torch.sum(scale_inv_freq).tolist(), torch.sum(self.proj_func.ode_down_proj).tolist())
|
86 |
+
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
87 |
+
else:
|
88 |
+
scale_inv_freq = torch.exp(solution)
|
89 |
+
freqs = torch.einsum('i, kl -> kil', ex_positions, scale_inv_freq)
|
90 |
+
embed = torch.cat((freqs,freqs), dim=-1)
|
91 |
+
return embed
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def forward(self, device, dtype, seq_len, do_train=False):
|
96 |
+
device = self.proj_func.ode_up_proj.device
|
97 |
+
scale_factor = seq_len // self.max_position_embeddings
|
98 |
+
if do_train:
|
99 |
+
t_val = self.sample_random_times(self.max_t+1, device)[0]
|
100 |
+
import math
|
101 |
+
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
|
102 |
+
ex_positions = torch.cat([
|
103 |
+
torch.tensor([0]),
|
104 |
+
(sampled_position_ids + 1) / scale_factor,
|
105 |
+
torch.tensor([seq_len*t_val//scale_factor-1])]
|
106 |
+
).to(device, dtype=torch.float32)
|
107 |
+
else:
|
108 |
+
t_val = scale_factor if seq_len%self.max_position_embeddings == 0.0 else scale_factor + 1
|
109 |
+
t_val = t_val if t_val <= self.max_t else self.max_t
|
110 |
+
ex_positions = torch.arange(0, self.max_position_embeddings * t_val, dtype=torch.float32).to(device)
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
if t_val == 1.0:
|
115 |
+
scale_inv_freq = self.inv_freq.to(device)
|
116 |
+
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
117 |
+
embed = torch.cat((freqs,freqs), dim=-1)
|
118 |
+
cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
|
119 |
+
elif do_train:
|
120 |
+
time_grid = torch.tensor([1.0, t_val]).float().to(device)
|
121 |
+
embed = self.get_continuous_freq(time_grid, ex_positions, device)
|
122 |
+
cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
|
123 |
+
else:
|
124 |
+
if t_val > self.max_t_cached:
|
125 |
+
time_grid = torch.arange(1.0, self.max_t + 1.0, dtype=torch.float32).to(device)
|
126 |
+
if self.freq_cached is None:
|
127 |
+
self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device)
|
128 |
+
embed = self.freq_cached[int(t_val)-1.0]
|
129 |
+
self.rope_cached = torch.cat((embed.cos()[None, None, None, :, :], embed.sin()[None, None, None, :, :]), dim=0)
|
130 |
+
self.max_t_cached = t_val
|
131 |
+
cos, sin = self.rope_cached
|
132 |
+
|
133 |
+
return torch.cat(
|
134 |
+
(cos[None, :, :, :seq_len, ...].to(dtype=dtype),
|
135 |
+
sin[None, :, :, :seq_len, ...].to(dtype=dtype)),
|
136 |
+
dim=0
|
137 |
+
)
|