|
import torch |
|
from torch import nn |
|
from torchdiffeq import odeint |
|
|
|
import wandb |
|
|
|
import math |
|
|
|
|
|
|
|
|
|
class ODELinear(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
factor, |
|
act, |
|
base=10000, |
|
**kwargs |
|
): |
|
super().__init__() |
|
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim)) |
|
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2)) |
|
self.dim = dim |
|
self.base = base |
|
if act == "tanh": |
|
self.act = torch.nn.Tanh() |
|
elif act == "silu": |
|
self.act = torch.nn.SiLU() |
|
else: |
|
raise ValueError(f"act must be one of ['tanh', 'silu'], got {act}") |
|
self.reset_parameters() |
|
|
|
def reset_parameters(self): |
|
nn.init.kaiming_uniform_(self.ode_up_proj, a=math.sqrt(5)) |
|
nn.init.zeros_(self.ode_down_proj) |
|
|
|
def get_time_embedding(self, t, base=10000, device='cuda', dtype=torch.float32): |
|
if t < 1: |
|
alpha = 1 |
|
else: |
|
alpha = 2*t-1 |
|
ntk_base = base * alpha ** (self.dim / (self.dim-2)) |
|
ntk_inv_freq = 1.0 / (ntk_base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim)) |
|
index = torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) |
|
delta_ntk_freq = -2*index/(self.dim-2) * 1 / (base ** (index/self.dim) * (alpha ** (index/(self.dim-2) + 1))) |
|
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype) |
|
|
|
def forward(self, t, x: torch.Tensor): |
|
|
|
device = x.device |
|
delta_time, time = self.get_time_embedding(t.to(device), device=device, dtype=x.dtype) |
|
x = x + torch.log(time) |
|
time_embed = delta_time / time |
|
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float() |
|
delta_inv_freq = delta_inv_freq + time_embed |
|
return delta_inv_freq |
|
|
|
|
|
|
|
|
|
|
|
class CLEXScalingRotaryEmbedding(nn.Module): |
|
|
|
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None: |
|
super().__init__() |
|
|
|
self.max_t = rope_scaling["max_factor"] |
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
self.proj_func = ODELinear(dim, rope_scaling["param_factor"], rope_scaling["act"], base) |
|
self.rope_cached = None |
|
self.max_t_cached = 0 |
|
self.freq_cached = None |
|
self.time_dt = rope_scaling["time_dt"] |
|
self.ode_args = { |
|
"method": "rk4", |
|
"options": {"step_size": self.time_dt}, |
|
} |
|
|
|
def sample_random_times(self, max_t, device): |
|
return torch.randint(1, max_t, (1,), dtype = torch.long, device=device) |
|
|
|
def get_random_position_ids(self, n=2048, max=8192): |
|
positions = torch.randperm(max)[:n].sort().values |
|
return positions |
|
|
|
|
|
def get_continuous_freq(self, time_grid, ex_positions, device): |
|
solution = odeint( |
|
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args |
|
) |
|
if time_grid.size(0) == 2: |
|
scale_inv_freq = torch.exp(solution[1]) |
|
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) |
|
else: |
|
scale_inv_freq = torch.exp(solution) |
|
return scale_inv_freq |
|
embed = torch.cat((freqs,freqs), dim=-1) |
|
return embed |
|
|
|
|
|
|
|
def forward(self, input_embeds, seq_len, do_train=False): |
|
device = self.proj_func.ode_up_proj.device |
|
dtype = input_embeds.dtype |
|
scale_factor = seq_len // self.max_position_embeddings |
|
if do_train: |
|
t_val = self.sample_random_times(self.max_t+1, device)[0] |
|
if scale_factor < 1.0: |
|
scale_factor = 1 |
|
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float() |
|
ex_positions = torch.cat([ |
|
torch.tensor([0]), |
|
(sampled_position_ids + 1) / scale_factor, |
|
torch.tensor([seq_len*t_val//scale_factor-1])] |
|
).to(device, dtype=torch.float32) |
|
else: |
|
t_val = scale_factor if seq_len%self.max_position_embeddings == 0.0 else scale_factor + 1 |
|
t_val = t_val if t_val <= self.max_t else self.max_t |
|
ex_positions = torch.arange(0, self.max_position_embeddings * t_val, dtype=torch.float32).to(device) |
|
|
|
|
|
|
|
if t_val == 1.0: |
|
scale_inv_freq = self.inv_freq.to(device) |
|
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) |
|
embed = torch.cat((freqs,freqs), dim=-1) |
|
cos, sin = embed.cos(), embed.sin() |
|
elif do_train: |
|
time_grid = torch.tensor([1.0, t_val]).float().to(device) |
|
embed = self.get_continuous_freq(time_grid, ex_positions, device) |
|
cos, sin = embed.cos(), embed.sin() |
|
else: |
|
if self.freq_cached is None: |
|
time_grid = torch.arange(1.0, self.max_t+1.0, dtype=torch.float32).to(device) |
|
self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device) |
|
if t_val != self.max_t_cached: |
|
scale_inv_freq = self.freq_cached[int(t_val-1.0)] |
|
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq) |
|
embed = torch.cat((freqs,freqs), dim=-1) |
|
self.rope_cached = torch.cat((embed.cos()[None, :, :], embed.sin()[None, :, :]), dim=0) |
|
self.max_t_cached = t_val |
|
cos, sin = self.rope_cached |
|
return torch.cat( |
|
(cos[None, :seq_len].to(dtype=dtype), |
|
sin[None, :seq_len].to(dtype=dtype)), |
|
dim=0 |
|
) |