Update clex_layer.py
Browse files- clex_layer.py +44 -28
clex_layer.py
CHANGED
@@ -1,23 +1,34 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
from torchdiffeq import odeint
|
4 |
|
5 |
-
|
6 |
|
7 |
import math
|
8 |
|
|
|
|
|
|
|
9 |
class ODELinear(nn.Module):
|
10 |
def __init__(
|
11 |
self,
|
12 |
dim: int,
|
13 |
factor,
|
|
|
|
|
14 |
**kwargs
|
15 |
):
|
16 |
super().__init__()
|
17 |
-
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim)
|
18 |
-
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2)
|
19 |
self.dim = dim
|
20 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
self.reset_parameters()
|
22 |
|
23 |
def reset_parameters(self):
|
@@ -36,15 +47,20 @@ class ODELinear(nn.Module):
|
|
36 |
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
|
37 |
|
38 |
def forward(self, t, x: torch.Tensor):
|
39 |
-
|
|
|
|
|
40 |
x = x + torch.log(time)
|
41 |
time_embed = delta_time / time
|
42 |
-
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float()
|
|
|
43 |
return delta_inv_freq
|
44 |
|
45 |
|
46 |
|
47 |
-
|
|
|
|
|
48 |
|
49 |
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
|
50 |
super().__init__()
|
@@ -56,22 +72,21 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
56 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
57 |
self.register_buffer("inv_freq", inv_freq)
|
58 |
|
59 |
-
self.proj_func = ODELinear(dim, rope_scaling["param_factor"])
|
60 |
self.rope_cached = None
|
61 |
self.max_t_cached = 0
|
62 |
self.freq_cached = None
|
63 |
-
self.time_dt =
|
64 |
self.ode_args = {
|
65 |
"method": "rk4",
|
66 |
"options": {"step_size": self.time_dt},
|
67 |
}
|
68 |
|
69 |
def sample_random_times(self, max_t, device):
|
70 |
-
return torch.randint(
|
71 |
|
72 |
def get_random_position_ids(self, n=2048, max=8192):
|
73 |
positions = torch.randperm(max)[:n].sort().values
|
74 |
-
# positions = positions.to(device=device)
|
75 |
return positions
|
76 |
|
77 |
|
@@ -80,24 +95,24 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
80 |
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
|
81 |
)
|
82 |
if time_grid.size(0) == 2:
|
83 |
-
training
|
84 |
scale_inv_freq = torch.exp(solution[1])
|
85 |
-
# print(time_grid[1].tolist(), torch.sum(scale_inv_freq).tolist(), torch.sum(self.proj_func.ode_down_proj).tolist())
|
86 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
87 |
else:
|
88 |
scale_inv_freq = torch.exp(solution)
|
89 |
-
|
90 |
embed = torch.cat((freqs,freqs), dim=-1)
|
91 |
return embed
|
92 |
|
93 |
|
94 |
|
95 |
-
def forward(self,
|
96 |
device = self.proj_func.ode_up_proj.device
|
|
|
97 |
scale_factor = seq_len // self.max_position_embeddings
|
98 |
if do_train:
|
99 |
t_val = self.sample_random_times(self.max_t+1, device)[0]
|
100 |
-
|
|
|
101 |
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
|
102 |
ex_positions = torch.cat([
|
103 |
torch.tensor([0]),
|
@@ -115,23 +130,24 @@ class LlamaCLEXScalingRotaryEmbedding(nn.Module):
|
|
115 |
scale_inv_freq = self.inv_freq.to(device)
|
116 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
117 |
embed = torch.cat((freqs,freqs), dim=-1)
|
118 |
-
cos, sin = embed.cos()
|
119 |
elif do_train:
|
120 |
time_grid = torch.tensor([1.0, t_val]).float().to(device)
|
121 |
embed = self.get_continuous_freq(time_grid, ex_positions, device)
|
122 |
-
cos, sin = embed.cos()
|
123 |
else:
|
124 |
-
if
|
125 |
-
time_grid = torch.arange(1.0, self.max_t
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
|
|
|
|
130 |
self.max_t_cached = t_val
|
131 |
cos, sin = self.rope_cached
|
132 |
-
|
133 |
return torch.cat(
|
134 |
-
(cos[None,
|
135 |
-
sin[None,
|
136 |
dim=0
|
137 |
)
|
|
|
1 |
import torch
|
2 |
+
from torch import nn
|
3 |
from torchdiffeq import odeint
|
4 |
|
5 |
+
import wandb
|
6 |
|
7 |
import math
|
8 |
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
class ODELinear(nn.Module):
|
13 |
def __init__(
|
14 |
self,
|
15 |
dim: int,
|
16 |
factor,
|
17 |
+
act,
|
18 |
+
base=10000,
|
19 |
**kwargs
|
20 |
):
|
21 |
super().__init__()
|
22 |
+
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim))
|
23 |
+
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2))
|
24 |
self.dim = dim
|
25 |
+
self.base = base
|
26 |
+
if act == "tanh":
|
27 |
+
self.act = torch.nn.Tanh()
|
28 |
+
elif act == "silu":
|
29 |
+
self.act = torch.nn.SiLU()
|
30 |
+
else:
|
31 |
+
raise ValueError(f"act must be one of ['tanh', 'silu'], got {act}")
|
32 |
self.reset_parameters()
|
33 |
|
34 |
def reset_parameters(self):
|
|
|
47 |
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
|
48 |
|
49 |
def forward(self, t, x: torch.Tensor):
|
50 |
+
|
51 |
+
device = x.device
|
52 |
+
delta_time, time = self.get_time_embedding(t.to(device), device=device, dtype=x.dtype)
|
53 |
x = x + torch.log(time)
|
54 |
time_embed = delta_time / time
|
55 |
+
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float()
|
56 |
+
delta_inv_freq = delta_inv_freq + time_embed
|
57 |
return delta_inv_freq
|
58 |
|
59 |
|
60 |
|
61 |
+
|
62 |
+
|
63 |
+
class CLEXScalingRotaryEmbedding(nn.Module):
|
64 |
|
65 |
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
|
66 |
super().__init__()
|
|
|
72 |
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
73 |
self.register_buffer("inv_freq", inv_freq)
|
74 |
|
75 |
+
self.proj_func = ODELinear(dim, rope_scaling["param_factor"], rope_scaling["act"], base)
|
76 |
self.rope_cached = None
|
77 |
self.max_t_cached = 0
|
78 |
self.freq_cached = None
|
79 |
+
self.time_dt = rope_scaling["time_dt"]
|
80 |
self.ode_args = {
|
81 |
"method": "rk4",
|
82 |
"options": {"step_size": self.time_dt},
|
83 |
}
|
84 |
|
85 |
def sample_random_times(self, max_t, device):
|
86 |
+
return torch.randint(1, max_t, (1,), dtype = torch.long, device=device)
|
87 |
|
88 |
def get_random_position_ids(self, n=2048, max=8192):
|
89 |
positions = torch.randperm(max)[:n].sort().values
|
|
|
90 |
return positions
|
91 |
|
92 |
|
|
|
95 |
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
|
96 |
)
|
97 |
if time_grid.size(0) == 2:
|
|
|
98 |
scale_inv_freq = torch.exp(solution[1])
|
|
|
99 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
100 |
else:
|
101 |
scale_inv_freq = torch.exp(solution)
|
102 |
+
return scale_inv_freq
|
103 |
embed = torch.cat((freqs,freqs), dim=-1)
|
104 |
return embed
|
105 |
|
106 |
|
107 |
|
108 |
+
def forward(self, input_embeds, seq_len, do_train=False):
|
109 |
device = self.proj_func.ode_up_proj.device
|
110 |
+
dtype = input_embeds.dtype
|
111 |
scale_factor = seq_len // self.max_position_embeddings
|
112 |
if do_train:
|
113 |
t_val = self.sample_random_times(self.max_t+1, device)[0]
|
114 |
+
if scale_factor < 1.0:
|
115 |
+
scale_factor = 1
|
116 |
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
|
117 |
ex_positions = torch.cat([
|
118 |
torch.tensor([0]),
|
|
|
130 |
scale_inv_freq = self.inv_freq.to(device)
|
131 |
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
132 |
embed = torch.cat((freqs,freqs), dim=-1)
|
133 |
+
cos, sin = embed.cos(), embed.sin()
|
134 |
elif do_train:
|
135 |
time_grid = torch.tensor([1.0, t_val]).float().to(device)
|
136 |
embed = self.get_continuous_freq(time_grid, ex_positions, device)
|
137 |
+
cos, sin = embed.cos(), embed.sin()
|
138 |
else:
|
139 |
+
if self.freq_cached is None:
|
140 |
+
time_grid = torch.arange(1.0, self.max_t+1.0, dtype=torch.float32).to(device)
|
141 |
+
self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device)
|
142 |
+
if t_val != self.max_t_cached:
|
143 |
+
scale_inv_freq = self.freq_cached[int(t_val-1.0)]
|
144 |
+
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
|
145 |
+
embed = torch.cat((freqs,freqs), dim=-1)
|
146 |
+
self.rope_cached = torch.cat((embed.cos()[None, :, :], embed.sin()[None, :, :]), dim=0)
|
147 |
self.max_t_cached = t_val
|
148 |
cos, sin = self.rope_cached
|
|
|
149 |
return torch.cat(
|
150 |
+
(cos[None, :seq_len].to(dtype=dtype),
|
151 |
+
sin[None, :seq_len].to(dtype=dtype)),
|
152 |
dim=0
|
153 |
)
|