CLEX-7B-16K / clex_layer.py
Guanzheng's picture
Create clex_layer.py
54314d4 verified
raw
history blame
5.75 kB
import torch
import torch.nn as nn
from torchdiffeq import odeint
import math
class ODELinear(nn.Module):
def __init__(
self,
dim: int,
factor,
**kwargs
):
super().__init__()
self.ode_up_proj = nn.Parameter(torch.empty(dim//2, factor*dim).to(torch.float32))
self.ode_down_proj = nn.Parameter(torch.empty(factor*dim, dim//2).to(torch.float32))
self.dim = dim
self.act = torch.nn.SiLU()
self.reset_parameters()
def reset_parameters(self):
nn.init.kaiming_uniform_(self.ode_up_proj, a=math.sqrt(5))
nn.init.zeros_(self.ode_down_proj)
def get_time_embedding(self, t, base=10000, device='cuda', dtype=torch.float32):
if t < 1:
alpha = 1
else:
alpha = 2*t-1
ntk_base = base * alpha ** (self.dim / (self.dim-2))
ntk_inv_freq = 1.0 / (ntk_base ** (torch.arange(0, self.dim, 2, dtype=torch.float32).to(device) / self.dim))
index = torch.arange(0, self.dim, 2, dtype=torch.float32).to(device)
delta_ntk_freq = -2*index/(self.dim-2) * 1 / (base ** (index/self.dim) * (alpha ** (index/(self.dim-2) + 1)))
return delta_ntk_freq.to(device, dtype=dtype), ntk_inv_freq.to(device, dtype=dtype)
def forward(self, t, x: torch.Tensor):
delta_time, time = self.get_time_embedding(t, device=x.device, dtype=x.dtype)
x = x + torch.log(time)
time_embed = delta_time / time
delta_inv_freq = self.act(x @ self.ode_up_proj.float()) @ self.ode_down_proj.float() + time_embed
return delta_inv_freq
class LlamaCLEXScalingRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, rope_scaling=None, base=10000, device=None) -> None:
super().__init__()
self.max_t = rope_scaling["max_factor"]
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq)
self.proj_func = ODELinear(dim, rope_scaling["param_factor"])
self.rope_cached = None
self.max_t_cached = 0
self.freq_cached = None
self.time_dt = 0.01
self.ode_args = {
"method": "rk4",
"options": {"step_size": self.time_dt},
}
def sample_random_times(self, max_t, device):
return torch.randint(2, max_t, (1,), dtype = torch.long, device=device)
def get_random_position_ids(self, n=2048, max=8192):
positions = torch.randperm(max)[:n].sort().values
# positions = positions.to(device=device)
return positions
def get_continuous_freq(self, time_grid, ex_positions, device):
solution = odeint(
self.proj_func, torch.log(self.inv_freq.to(device, dtype=torch.float32)), time_grid, **self.ode_args
)
if time_grid.size(0) == 2:
training
scale_inv_freq = torch.exp(solution[1])
# print(time_grid[1].tolist(), torch.sum(scale_inv_freq).tolist(), torch.sum(self.proj_func.ode_down_proj).tolist())
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
else:
scale_inv_freq = torch.exp(solution)
freqs = torch.einsum('i, kl -> kil', ex_positions, scale_inv_freq)
embed = torch.cat((freqs,freqs), dim=-1)
return embed
def forward(self, device, dtype, seq_len, do_train=False):
device = self.proj_func.ode_up_proj.device
scale_factor = seq_len // self.max_position_embeddings
if do_train:
t_val = self.sample_random_times(self.max_t+1, device)[0]
import math
sampled_position_ids = self.get_random_position_ids(n=seq_len-2, max=seq_len*t_val-2).float()
ex_positions = torch.cat([
torch.tensor([0]),
(sampled_position_ids + 1) / scale_factor,
torch.tensor([seq_len*t_val//scale_factor-1])]
).to(device, dtype=torch.float32)
else:
t_val = scale_factor if seq_len%self.max_position_embeddings == 0.0 else scale_factor + 1
t_val = t_val if t_val <= self.max_t else self.max_t
ex_positions = torch.arange(0, self.max_position_embeddings * t_val, dtype=torch.float32).to(device)
if t_val == 1.0:
scale_inv_freq = self.inv_freq.to(device)
freqs = torch.outer(ex_positions.float().squeeze(), scale_inv_freq)
embed = torch.cat((freqs,freqs), dim=-1)
cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
elif do_train:
time_grid = torch.tensor([1.0, t_val]).float().to(device)
embed = self.get_continuous_freq(time_grid, ex_positions, device)
cos, sin = embed.cos()[None, None, :, :], embed.sin()[None, None, :, :]
else:
if t_val > self.max_t_cached:
time_grid = torch.arange(1.0, self.max_t + 1.0, dtype=torch.float32).to(device)
if self.freq_cached is None:
self.freq_cached = self.get_continuous_freq(time_grid, ex_positions, device)
embed = self.freq_cached[int(t_val)-1.0]
self.rope_cached = torch.cat((embed.cos()[None, None, None, :, :], embed.sin()[None, None, None, :, :]), dim=0)
self.max_t_cached = t_val
cos, sin = self.rope_cached
return torch.cat(
(cos[None, :, :, :seq_len, ...].to(dtype=dtype),
sin[None, :, :, :seq_len, ...].to(dtype=dtype)),
dim=0
)