File size: 1,620 Bytes
3a4290c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: apache-2.0
base_model: distilroberta-base
tags:
- text-classification
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: Sist-Diego-distilroberta-base-mrpc-glue-omar-espejel
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Sist-Diego-distilroberta-base-mrpc-glue-omar-espejel
This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the google-bert/bert-base-uncased dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5806
- Accuracy: 0.8554
- F1: 0.8941
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.5454 | 1.0893 | 500 | 0.4457 | 0.8431 | 0.8900 |
| 0.3577 | 2.1786 | 1000 | 0.5806 | 0.8554 | 0.8941 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
|