File size: 6,128 Bytes
258e1da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

""" SincNet model """
from functools import lru_cache
import numpy as np
import logging

import torch
import torch.nn as nn
import torch.nn.functional as F

logger = logging.getLogger(__name__)

class SincNetFilterConvLayer(nn.Module):
    """SincNet fast convolution filter layer"""

    def __init__(self, out_channels: int, kernel_size: int, sample_rate=16000, 
                stride=1, padding=0, dilation=1, min_low_hz=50, min_band_hz=50, 
                in_channels=1, requires_grad=False):
        """
        Args:
            out_channels : `int` number of filters.
            kernel_size : `int` filter length.
            sample_rate : `int`, optional sample rate. Defaults to 16000.
        """
        super(SincNetFilterConvLayer, self).__init__()

        if in_channels != 1:
            raise ValueError(f"SincNetFilterConvLayer only support in_channels = 1, was in_channels = {in_channels}")

        self._out_channels = out_channels
        self._kernel_size = kernel_size

        if kernel_size % 2 == 0:
            self._kernel_size += 1 # Forcing the filters to be odd
            
        self._stride = stride
        self._padding = padding
        self._dilation = dilation
        self._sample_rate = sample_rate
        self._min_low_hz = min_low_hz
        self._min_band_hz = min_band_hz

        # initialize filterbanks such that they are equally spaced in Mel scale
        low_hz = 30
        high_hz = self._sample_rate / 2 - (self._min_low_hz + self._min_band_hz)
        mel = np.linspace(
            2595 * np.log10(1 + low_hz / 700), # Convert Hz to Mel
            2595 * np.log10(1 + high_hz / 700), # Convert Hz to Mel
            self._out_channels // 2 + 1
        )
        hz = 700 * (10 ** (mel / 2595) - 1) # Convert Mel to Hz
        
        self._low_hz = nn.Parameter(
            torch.Tensor(hz[:-1]).view(-1, 1),
            requires_grad=requires_grad
        )
        self._band_hz = nn.Parameter(
            torch.Tensor(np.diff(hz)).view(-1, 1),
            requires_grad=requires_grad
        )
        self.register_buffer(
            "_window", 
            torch.from_numpy(np.hamming(self._kernel_size)[: self._kernel_size // 2]).float()
        )
        self.register_buffer(
            "_n",
            (2* np.pi * torch.arange(-(self._kernel_size // 2), 0.0).view(1, -1) / self._sample_rate)
        )

    @property
    @lru_cache(maxsize=1)
    def filters(self) -> torch.Tensor:
        low = self._min_low_hz + torch.abs(self._low_hz)
        high = torch.clamp(low + self._min_band_hz + torch.abs(self._band_hz), self._min_low_hz, self._sample_rate/2)
        band = (high-low)[:,0]

        f_times_t_low = torch.matmul(low, self._n)
        f_times_t_high = torch.matmul(high, self._n)

        band_pass_left = ((torch.sin(f_times_t_high)-torch.sin(f_times_t_low))/(self._n/2))*self._window
        band_pass_center = 2 * band.view(-1, 1)
        band_pass_right = torch.flip(band_pass_left, dims=[1])

        band_pass = torch.cat([band_pass_left,band_pass_center,band_pass_right],dim=1)
        band_pass = band_pass / (2*band[:,None])
        return band_pass.view(self._out_channels, 1, self._kernel_size)

    def forward(self, waveforms: torch.Tensor) -> torch.Tensor:
        """
        Args:
            waveforms : (batch_size, 1, n_samples) batch of waveforms.
        
        Returns:
            features : (batch_size, out_channels, n_samples_out) batch of sinc filters activations.
        """
        return F.conv1d(waveforms, self.filters, stride=self._stride,
                        padding=self._padding, dilation=self._dilation,
        ).abs_() # https://github.com/mravanelli/SincNet/issues/4

class SincNet(nn.Module):
    """SincNet"""

    def __init__(
        self,  
        num_sinc_filters: int = 80,
        sinc_filter_length: int = 251,
        num_conv_filters: int = 60,
        conv_filter_length: int = 5,
        pool_kernel_size: int = 3,
        pool_stride: int = 3,
        sample_rate: int = 16000,
        sinc_filter_stride: int = 10,
        sinc_filter_padding: int = 0,
        sinc_filter_dilation: int = 1,
        min_low_hz: int = 50,
        min_band_hz: int = 50,
        sinc_filter_in_channels: int = 1,
        num_wavform_channels: int = 1,
    ):
        super().__init__()

        if sample_rate != 16000:
            raise NotImplementedError(f"SincNet only supports 16kHz audio (sample_rate = 16000), was sample_rate = {sample_rate}")

        self.wav_norm1d = nn.InstanceNorm1d(num_wavform_channels, affine=True)

        self.conv1d = nn.ModuleList([
            SincNetFilterConvLayer(
                num_sinc_filters, 
                sinc_filter_length, 
                sample_rate=sample_rate, 
                stride=sinc_filter_stride,
                padding=sinc_filter_padding,
                dilation=sinc_filter_dilation,
                min_low_hz=min_low_hz,
                min_band_hz=min_band_hz,
                in_channels=sinc_filter_in_channels,
            ),
            nn.Conv1d(num_sinc_filters, num_conv_filters, conv_filter_length),
            nn.Conv1d(num_conv_filters, num_conv_filters, conv_filter_length),
        ])
        self.pool1d = nn.ModuleList([
            nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
            nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
            nn.MaxPool1d(pool_kernel_size, stride=pool_stride),
        ])
        self.norm1d = nn.ModuleList([
            nn.InstanceNorm1d(num_sinc_filters, affine=True),
            nn.InstanceNorm1d(num_conv_filters, affine=True),
            nn.InstanceNorm1d(num_conv_filters, affine=True),
        ])

    def forward(self, waveforms: torch.Tensor) -> torch.Tensor:
        """
        Args:
            waveforms : (batch, channel, sample)
        """
        outputs = self.wav_norm1d(waveforms)

        for _, (conv1d, pool1d, norm1d) in enumerate(
            zip(self.conv1d, self.pool1d, self.norm1d)
        ):
            outputs = conv1d(outputs)
            outputs = F.leaky_relu(norm1d(pool1d(outputs)))

        return outputs