File size: 2,405 Bytes
00dd555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686696
 
 
 
 
 
 
 
 
 
 
00dd555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686696
 
00dd555
 
 
8a58bed
00dd555
 
 
2686696
 
 
 
 
 
00dd555
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
base_model: google/pegasus-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pegasus-large-finetuned-cnn_dailymail
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# pegasus-large-finetuned-cnn_dailymail

This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0469
- Rouge1: 45.2373
- Rouge2: 22.4813
- Rougel: 31.8329
- Rougelsum: 41.6862
- Bleu 1: 34.8304
- Bleu 2: 23.4162
- Bleu 3: 17.4357
- Meteor: 35.0815
- Lungime rezumat: 56.5898
- Lungime original: 48.7656

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Bleu 1  | Bleu 2  | Bleu 3  | Meteor  | Lungime rezumat | Lungime original |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:-------:|:---------------:|:----------------:|
| 1.2058        | 1.0   | 7165  | 1.0640          | 44.5245 | 22.1439 | 31.4275 | 40.9808   | 33.9802 | 22.8183 | 16.9712 | 34.1035 | 55.245          | 48.7656          |
| 1.0602        | 2.0   | 14330 | 1.0534          | 44.7088 | 22.1286 | 31.3398 | 41.0804   | 34.1571 | 22.9231 | 17.0479 | 35.1782 | 59.6166         | 48.7656          |
| 1.0144        | 3.0   | 21495 | 1.0479          | 45.0257 | 22.3325 | 31.7313 | 41.4189   | 34.6084 | 23.227  | 17.2859 | 34.7757 | 56.1443         | 48.7656          |
| 0.9875        | 4.0   | 28660 | 1.0469          | 45.2373 | 22.4813 | 31.8329 | 41.6862   | 34.8304 | 23.4162 | 17.4357 | 35.0815 | 56.5898         | 48.7656          |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1