File size: 3,389 Bytes
a66a2af
b1d12d2
 
a66a2af
 
 
 
 
 
 
 
 
 
 
 
 
 
b1d12d2
a66a2af
0bc8a56
 
 
 
 
 
 
 
 
 
 
a66a2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc8a56
 
a66a2af
 
 
0bc8a56
a66a2af
 
 
0bc8a56
 
 
 
 
 
 
 
 
 
 
 
a66a2af
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-base-finetuned-cnn_dailymail
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-finetuned-cnn_dailymail

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0437
- Rouge1: 25.3365
- Rouge2: 13.3508
- Rougel: 21.4401
- Rougelsum: 23.9107
- Bleu 1: 3.9737
- Bleu 2: 2.7698
- Bleu 3: 2.0856
- Meteor: 12.8165
- Lungime rezumat: 11.6837
- Lungime original: 48.7563

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Bleu 1 | Bleu 2 | Bleu 3 | Meteor  | Lungime rezumat | Lungime original |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:------:|:------:|:-------:|:---------------:|:----------------:|
| 1.3567        | 1.0   | 896  | 1.0741          | 25.256  | 13.2616 | 21.4201 | 23.8469   | 4.0588 | 2.8245 | 2.1231 | 12.7828 | 11.7437         | 48.7563          |
| 1.0881        | 2.0   | 1792 | 1.0609          | 25.1093 | 13.0973 | 21.1393 | 23.6685   | 3.943  | 2.7211 | 2.0277 | 12.6304 | 11.758          | 48.7563          |
| 1.0172        | 3.0   | 2688 | 1.0445          | 25.2209 | 13.2134 | 21.3199 | 23.8191   | 4.0205 | 2.7985 | 2.0994 | 12.7482 | 11.751          | 48.7563          |
| 0.9633        | 4.0   | 3584 | 1.0392          | 25.0763 | 13.145  | 21.1885 | 23.6877   | 3.9164 | 2.7134 | 2.043  | 12.6657 | 11.6963         | 48.7563          |
| 0.921         | 5.0   | 4480 | 1.0369          | 25.2214 | 13.3045 | 21.4317 | 23.8493   | 3.9533 | 2.7617 | 2.0827 | 12.7434 | 11.6727         | 48.7563          |
| 0.8865        | 6.0   | 5376 | 1.0377          | 25.3824 | 13.4543 | 21.4896 | 24.0024   | 3.9731 | 2.799  | 2.1298 | 12.9173 | 11.6563         | 48.7563          |
| 0.8576        | 7.0   | 6272 | 1.0347          | 25.1748 | 13.3232 | 21.3419 | 23.7755   | 3.925  | 2.7544 | 2.089  | 12.7437 | 11.6417         | 48.7563          |
| 0.8353        | 8.0   | 7168 | 1.0373          | 25.3485 | 13.3938 | 21.4843 | 23.9589   | 3.9384 | 2.7462 | 2.071  | 12.8098 | 11.6407         | 48.7563          |
| 0.8173        | 9.0   | 8064 | 1.0448          | 25.345  | 13.3389 | 21.4394 | 23.9221   | 3.9543 | 2.7587 | 2.0827 | 12.8046 | 11.6827         | 48.7563          |
| 0.8044        | 10.0  | 8960 | 1.0437          | 25.3365 | 13.3508 | 21.4401 | 23.9107   | 3.9737 | 2.7698 | 2.0856 | 12.8165 | 11.6837         | 48.7563          |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1