File size: 5,496 Bytes
c0d8e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.optim as optim
import logging
import argparse
import json
from datetime import datetime
from torch.utils.data import DataLoader, WeightedRandomSampler, random_split, RandomSampler, SequentialSampler
from prepare_data import SpectrogramDataset, collate_fn
from train_model import (
    AudioResNet,
    train_one_epoch,
    validate_one_epoch,
    evaluate_model,
    plot_confusion_matrix,
    device
)
from sklearn.metrics import classification_report, confusion_matrix
import numpy as np
import os

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
fh = logging.FileHandler('finish_training.log')
fh.setLevel(logging.INFO)
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)

def parse_args():
    parser = argparse.ArgumentParser(description='Train Sample Classifier Model')
    parser.add_argument('--config', type=str, required=True, help='Path to the config file')
    return parser.parse_args()

def load_config(config_path):
    if not os.path.exists(config_path):
        raise FileNotFoundError(f"Config file not found: {config_path}")
    with open(config_path, 'r') as f:
        config = json.load(f)
    return config

def train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, device, patience=10, max_epochs=50):
    best_loss = float('inf')
    patience_counter = 0

    for epoch in range(max_epochs):
        train_loss, train_accuracy = train_one_epoch(model, train_loader, criterion, optimizer, device)
        val_loss, val_accuracy = validate_one_epoch(model, val_loader, criterion, device)

        log_message = (f'Epoch {epoch + 1}:\n'
                       f'Training Loss: {train_loss:.4f}, Training Accuracy: {train_accuracy:.4f}, '
                       f'Validation Loss: {val_loss:.4f}, Validation Accuracy: {val_accuracy:.4f}\n')
        logging.info(log_message)

        scheduler.step(val_loss)
        current_lr = optimizer.param_groups[0]['lr']
        logging.info(f'Current learning rate: {current_lr}')

        if val_loss < best_loss:
            best_loss = val_loss
            patience_counter = 0
            torch.save(model.state_dict(), 'best_model.pth')
        else:
            patience_counter += 1

        if patience_counter >= patience:
            logging.info('Early stopping triggered')
            break

        if (epoch + 1) % 10 == 0:
            checkpoint_path = f'checkpoint_epoch_{epoch + 1}.pth'
            torch.save(model.state_dict(), checkpoint_path)
            logging.info(f'Model saved to {checkpoint_path}')

def main():
    try:
        args = parse_args()
        config = load_config(args.config)

        dataset = SpectrogramDataset(config, config['directory'], process_new=True)
        if len(dataset) == 0:
            raise ValueError("The dataset is empty. Please check the data loading process.")
        num_classes = len(dataset.label_to_index)
        class_names = list(dataset.label_to_index.keys())

        train_size = int(0.7 * len(dataset))
        val_size = int(0.15 * len(dataset))
        test_size = len(dataset) - train_size - val_size
        train_dataset, val_dataset, test_dataset = random_split(dataset, [train_size, val_size, test_size])

        train_labels = [dataset.labels[i] for i in train_dataset.indices]
        class_counts = np.bincount(train_labels)
        class_weights = 1. / class_counts
        sample_weights = class_weights[train_labels]
        sampler = WeightedRandomSampler(sample_weights, len(sample_weights))

        train_loader = DataLoader(train_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=sampler)
        val_loader = DataLoader(val_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=RandomSampler(val_dataset))
        test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], collate_fn=collate_fn, sampler=SequentialSampler(test_dataset))

        # Load best hyperparameters
        best_params = {'learning_rate': 0.00014687223021475341, 'weight_decay': 2.970399818935859e-05, 'dropout_rate': 0.36508234143710705}

        model = AudioResNet(num_classes=num_classes, dropout_rate=best_params['dropout_rate']).to(device)
        criterion = nn.NLLLoss()
        optimizer = optim.Adam(model.parameters(), lr=best_params['learning_rate'], weight_decay=best_params['weight_decay'])
        scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=3)

        # Load the previously saved best model
        if os.path.exists('checkpoint_epoch_50.pth'):
            model.load_state_dict(torch.load('checkpoint_epoch_50.pth'))
            logging.info("Loaded the best model from previous training.")

        train_model(model, train_loader, val_loader, criterion, optimizer, scheduler, device, patience=config['patience'], max_epochs=50)

        model.load_state_dict(torch.load('checkpoint_epoch_50.pth'))
        evaluate_model(model, test_loader, device, class_names)
    except Exception as e:
        logging.error(f"An error occurred: {e}")

if __name__ == '__main__':
    main()