File size: 12,848 Bytes
4e38daf 621df19 4e38daf 621df19 4e38daf 303b1b2 4e38daf 303b1b2 4e38daf 303b1b2 4e38daf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import streamlit as st
from annotated_text import annotated_text
import torch
from torch.utils.data import DataLoader
from .args_model_utils import tokenize_and_align_labels_with_pos_ner_dep, find_nearest_nugget_features, find_dep_depth
from .nugget_model_utils import CustomRobertaWithPOS
from .utils import get_content, get_event_nugget, get_idxs_from_text, get_entity_from_idx, list_of_pos_tags, event_args_list
from .event_nugget_predict import get_event_nuggets
import spacy
from transformers import AutoTokenizer
from datasets import load_dataset, Features, ClassLabel, Value, Sequence, Dataset
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
def find_dep_depth(token):
depth = 0
current_token = token
while current_token.head != current_token:
depth += 1
current_token = current_token.head
return min(depth, 16)
nlp = spacy.load('en_core_web_sm')
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
event_nugget_tag_list = ["Databreach", "Ransom", "PatchVulnerability", "Phishing", "DiscoverVulnerability"]
arg_nugget_relative_pos_tag_list = ["before-same-sentence", "before-differ-sentence", "after-same-sentence", "after-differ-sentence"]
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
# from .args_model_utils import CustomRobertaWithPOS as ArgumentModel
# model_nugget = ArgumentModel(num_classes=43)
# model_nugget.load_state_dict(torch.load(f"{os.path.dirname(os.path.abspath(__file__))}/argument_model_state_dict.pth", map_location=device))
# model_nugget.eval()
"""
Function: create_dataloader(text_input)
Description: This function creates a DataLoader for processing text data, tokenizes it, and organizes it into batches.
Inputs:
- text_input: The input text to be processed.
Output:
- dataloader: A DataLoader for the tokenized and batched text data.
- tokenized_dataset_ner: The tokenized dataset used for training.
"""
def create_dataloader(model_nugget, text_input):
event_nuggets = get_event_nuggets(model_nugget, text_input)
doc = nlp(text_input)
content_as_words_emdash = [tok.text for tok in doc]
content_as_words_emdash = [word.replace("``", '"').replace("''", '"').replace("$", "") for word in content_as_words_emdash]
content_idx_dict = get_idxs_from_text(text_input, content_as_words_emdash)
data = []
words = []
arg_nugget_nearest_subtype = []
arg_nugget_nearest_dist = []
arg_nugget_relative_pos = []
pos_spacy = [tok.pos_ for tok in doc]
ner_spacy = [ent.ent_iob_ + "-" + ent.ent_type_ if ent.ent_iob_ != "O" else ent.ent_iob_ for ent in doc]
dep_spacy = [tok.dep_ for tok in doc]
depth_spacy = [find_dep_depth(tok) for tok in doc]
for content_dict in content_idx_dict:
start_idx, end_idx = content_dict["start_idx"], content_dict["end_idx"]
nearest_subtype, nearest_dist, relative_pos = find_nearest_nugget_features(doc, content_dict["start_idx"], content_dict["end_idx"], event_nuggets)
words.append(content_dict["word"])
arg_nugget_nearest_subtype.append(nearest_subtype)
arg_nugget_nearest_dist.append(nearest_dist)
arg_nugget_relative_pos.append(relative_pos)
content_token_len = len(tokenizer(words, truncation=False, is_split_into_words=True)["input_ids"])
if content_token_len > tokenizer.model_max_length:
no_split = (content_token_len // tokenizer.model_max_length) + 2
split_len = (len(words) // no_split) + 1
last_id = 0
threshold = split_len
for id, token in enumerate(words):
if token == "." and id > threshold:
data.append(
{
"tokens" : words[last_id : id + 1],
"pos_spacy" : pos_spacy[last_id : id + 1],
"ner_spacy" : ner_spacy[last_id : id + 1],
"dep_spacy" : dep_spacy[last_id : id + 1],
"depth_spacy" : depth_spacy[last_id : id + 1],
"nearest_nugget_subtype" : arg_nugget_nearest_subtype[last_id : id + 1],
"nearest_nugget_dist" : arg_nugget_nearest_dist[last_id : id + 1],
"arg_nugget_relative_pos" : arg_nugget_relative_pos[last_id : id + 1]
}
)
last_id = id + 1
threshold += split_len
data.append({"tokens" : words[last_id : ],
"pos_spacy" : pos_spacy[last_id : ],
"ner_spacy" : ner_spacy[last_id : ],
"dep_spacy" : dep_spacy[last_id : ],
"depth_spacy" : depth_spacy[last_id : ],
"nearest_nugget_subtype" : arg_nugget_nearest_subtype[last_id : ],
"nearest_nugget_dist" : arg_nugget_nearest_dist[last_id : ],
"arg_nugget_relative_pos" : arg_nugget_relative_pos[last_id : ]})
else:
data.append(
{
"tokens" : words,
"pos_spacy" : pos_spacy,
"ner_spacy" : ner_spacy,
"dep_spacy" : dep_spacy,
"depth_spacy" : depth_spacy,
"nearest_nugget_subtype" : arg_nugget_nearest_subtype,
"nearest_nugget_dist" : arg_nugget_nearest_dist,
"arg_nugget_relative_pos" : arg_nugget_relative_pos
}
)
ner_features = Features({'tokens' : Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
'pos_spacy' : Sequence(feature=ClassLabel(num_classes=len(pos_spacy_tag_list), names=pos_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'ner_spacy' : Sequence(feature=ClassLabel(num_classes=len(ner_spacy_tag_list), names=ner_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'dep_spacy' : Sequence(feature=ClassLabel(num_classes=len(dep_spacy_tag_list), names=dep_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
'depth_spacy' : Sequence(feature=ClassLabel(num_classes=17, names= list(range(17)), names_file=None, id=None), length=-1, id=None),
'nearest_nugget_subtype' : Sequence(feature=ClassLabel(num_classes=len(event_nugget_tag_list), names=event_nugget_tag_list, names_file=None, id=None), length=-1, id=None),
'nearest_nugget_dist' : Sequence(feature=ClassLabel(num_classes=11, names=list(range(11)), names_file=None, id=None), length=-1, id=None),
'arg_nugget_relative_pos' : Sequence(feature=ClassLabel(num_classes=len(arg_nugget_relative_pos_tag_list), names=arg_nugget_relative_pos_tag_list, names_file=None, id=None), length=-1, id=None),
})
dataset = Dataset.from_list(data, features=ner_features)
tokenized_dataset_ner = dataset.map(tokenize_and_align_labels_with_pos_ner_dep, fn_kwargs={'tokenizer' : tokenizer}, batched=True, load_from_cache_file=False)
tokenized_dataset_ner = tokenized_dataset_ner.with_format("torch")
tokenized_dataset_ner = tokenized_dataset_ner.remove_columns("tokens")
batch_size = 4 # Number of input texts
dataloader = DataLoader(tokenized_dataset_ner, batch_size=batch_size)
return dataloader, tokenized_dataset_ner
"""
Function: predict(dataloader)
Description: This function performs prediction on a given dataloader using a trained model for label classification.
Inputs:
- dataloader: A DataLoader containing the input data for prediction.
Output:
- predicted_label: A tensor containing the predicted labels for each input in the dataloader.
"""
def predict(dataloader):
predicted_label = []
for batch in dataloader:
with torch.no_grad():
logits = model_nugget(**batch)
batch_predicted_label = logits.argmax(-1)
predicted_label.append(batch_predicted_label)
return torch.cat(predicted_label, dim=-1)
"""
Function: show_annotations(text_input)
Description: This function displays annotated event arguments in the provided input text.
Inputs:
- text_input: The input text containing event arguments to be annotated and displayed.
Output:
- An interactive display of annotated event arguments within the input text.
"""
def show_annotations(text_input):
st.title("Event Arguments")
dataloader, tokenized_dataset_ner = create_dataloader(text_input)
predicted_label = predict(dataloader)
for idx, labels in enumerate(predicted_label):
token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]
tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]
text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
idxs = get_idxs_from_text(text, tokens)
labels = labels[token_mask]
annotated_text_list = []
last_label = ""
cumulative_tokens = ""
last_id = 0
for idx, label in zip(idxs, labels):
to_label = event_args_list[label]
label_short = to_label.split("-")[1] if "-" in to_label else to_label
if last_label == label_short:
cumulative_tokens += text[last_id : idx["end_idx"]]
last_id = idx["end_idx"]
else:
if last_label != "":
if last_label == "O":
annotated_text_list.append(cumulative_tokens)
else:
annotated_text_list.append((cumulative_tokens, last_label))
last_label = label_short
cumulative_tokens = idx["word"]
last_id = idx["end_idx"]
if last_label == "O":
annotated_text_list.append(cumulative_tokens)
else:
annotated_text_list.append((cumulative_tokens, last_label))
annotated_text(annotated_text_list)
"""
Function: get_event_args(text_input)
Description: This function extracts predicted event arguments (event nuggets) from the provided input text.
Inputs:
- text_input: The input text containing event nuggets to be extracted.
Output:
- predicted_event_nuggets: A list of dictionaries, each representing an extracted event nugget with start and end offsets,
subtype, and text content.
"""
def get_event_args(text_input):
dataloader, tokenized_dataset_ner = create_dataloader(text_input)
predicted_label = predict(dataloader)
predicted_event_nuggets = []
text_length = 0
for idx, labels in enumerate(predicted_label):
token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]
tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]
text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
idxs = get_idxs_from_text(text_input[text_length : ], tokens)
labels = labels[token_mask]
start_idx = 0
end_idx = 0
last_label = ""
for idx, label in zip(idxs, labels):
to_label = event_args_list[label]
if "-" in to_label:
label_split = to_label.split("-")[1]
else:
label_split = to_label
if label_split == last_label:
end_idx = idx["end_idx"]
else:
if text_input[start_idx : end_idx] != "" and last_label != "O":
predicted_event_nuggets.append(
{
"startOffset" : text_length + start_idx,
"endOffset" : text_length + end_idx,
"subtype" : last_label,
"text" : text_input[text_length + start_idx : text_length + end_idx]
}
)
start_idx = idx["start_idx"]
end_idx = idx["start_idx"] + len(idx["word"])
last_label = label_split
text_length += idx["end_idx"]
return predicted_event_nuggets
|