File size: 12,848 Bytes
4e38daf
 
 
 
 
621df19
 
 
4e38daf
621df19
4e38daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
303b1b2
 
 
 
4e38daf
 
 
 
 
 
 
 
 
 
303b1b2
4e38daf
303b1b2
4e38daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import streamlit as st
from annotated_text import annotated_text
import torch
from torch.utils.data import DataLoader

from .args_model_utils import tokenize_and_align_labels_with_pos_ner_dep, find_nearest_nugget_features, find_dep_depth
from .nugget_model_utils import CustomRobertaWithPOS
from .utils import get_content, get_event_nugget, get_idxs_from_text, get_entity_from_idx, list_of_pos_tags, event_args_list

from .event_nugget_predict import get_event_nuggets
import spacy
from transformers import AutoTokenizer
from datasets import load_dataset, Features, ClassLabel, Value, Sequence, Dataset
import os

os.environ["TOKENIZERS_PARALLELISM"] = "true"

def find_dep_depth(token):
    depth = 0
    current_token = token
    while current_token.head != current_token:
        depth += 1
        current_token = current_token.head
    return min(depth, 16)


nlp = spacy.load('en_core_web_sm')

pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
event_nugget_tag_list = ["Databreach", "Ransom", "PatchVulnerability", "Phishing", "DiscoverVulnerability"]
arg_nugget_relative_pos_tag_list = ["before-same-sentence", "before-differ-sentence", "after-same-sentence", "after-differ-sentence"]

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)

# from .args_model_utils import CustomRobertaWithPOS as ArgumentModel
# model_nugget = ArgumentModel(num_classes=43)
# model_nugget.load_state_dict(torch.load(f"{os.path.dirname(os.path.abspath(__file__))}/argument_model_state_dict.pth", map_location=device)) 
# model_nugget.eval()

"""
Function: create_dataloader(text_input)
Description: This function creates a DataLoader for processing text data, tokenizes it, and organizes it into batches.
Inputs:
    - text_input: The input text to be processed.
Output:
    - dataloader: A DataLoader for the tokenized and batched text data.
    - tokenized_dataset_ner: The tokenized dataset used for training.
"""
def create_dataloader(model_nugget, text_input):

    event_nuggets = get_event_nuggets(model_nugget, text_input)
    doc = nlp(text_input)

    content_as_words_emdash = [tok.text for tok in doc]
    content_as_words_emdash = [word.replace("``", '"').replace("''", '"').replace("$", "") for word in content_as_words_emdash]
    content_idx_dict = get_idxs_from_text(text_input, content_as_words_emdash)

    data = []

    words = []
    arg_nugget_nearest_subtype = []
    arg_nugget_nearest_dist = []
    arg_nugget_relative_pos = []

    pos_spacy = [tok.pos_ for tok in doc]
    ner_spacy = [ent.ent_iob_ + "-" + ent.ent_type_ if ent.ent_iob_ != "O" else ent.ent_iob_ for ent in doc]
    dep_spacy = [tok.dep_ for tok in doc]
    depth_spacy = [find_dep_depth(tok) for tok in doc]

    for content_dict in content_idx_dict:
        start_idx, end_idx = content_dict["start_idx"], content_dict["end_idx"]
        nearest_subtype, nearest_dist, relative_pos = find_nearest_nugget_features(doc, content_dict["start_idx"], content_dict["end_idx"], event_nuggets)
        words.append(content_dict["word"])

        arg_nugget_nearest_subtype.append(nearest_subtype)
        arg_nugget_nearest_dist.append(nearest_dist)
        arg_nugget_relative_pos.append(relative_pos)


    content_token_len = len(tokenizer(words, truncation=False, is_split_into_words=True)["input_ids"])
    if content_token_len > tokenizer.model_max_length:
        no_split = (content_token_len // tokenizer.model_max_length) + 2
        split_len = (len(words) // no_split) + 1

        last_id = 0
        threshold = split_len

        for id, token in enumerate(words):
            if token == "." and id > threshold:
                data.append(
                    {
                        "tokens" : words[last_id : id + 1],
                        "pos_spacy" : pos_spacy[last_id : id + 1],
                        "ner_spacy" : ner_spacy[last_id : id + 1],
                        "dep_spacy" : dep_spacy[last_id : id + 1],
                        "depth_spacy" : depth_spacy[last_id : id + 1],
                        "nearest_nugget_subtype" : arg_nugget_nearest_subtype[last_id : id + 1],
                        "nearest_nugget_dist" : arg_nugget_nearest_dist[last_id : id + 1],
                        "arg_nugget_relative_pos" : arg_nugget_relative_pos[last_id : id + 1]
                    }
                )
                last_id = id + 1
                threshold += split_len
        data.append({"tokens" : words[last_id : ],
                     "pos_spacy" : pos_spacy[last_id : ],
                     "ner_spacy" : ner_spacy[last_id : ],
                     "dep_spacy" : dep_spacy[last_id : ],
                     "depth_spacy" : depth_spacy[last_id : ],
                     "nearest_nugget_subtype" : arg_nugget_nearest_subtype[last_id : ],
                    "nearest_nugget_dist" : arg_nugget_nearest_dist[last_id : ],
                    "arg_nugget_relative_pos" : arg_nugget_relative_pos[last_id : ]}) 
    else:
        data.append(
            {
                "tokens" : words,
                "pos_spacy" : pos_spacy,
                "ner_spacy" : ner_spacy,
                "dep_spacy" : dep_spacy,
                "depth_spacy" : depth_spacy,
                "nearest_nugget_subtype" : arg_nugget_nearest_subtype,
                "nearest_nugget_dist" : arg_nugget_nearest_dist,
                "arg_nugget_relative_pos" : arg_nugget_relative_pos
            }
        )


    ner_features = Features({'tokens' : Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
                            'pos_spacy' : Sequence(feature=ClassLabel(num_classes=len(pos_spacy_tag_list), names=pos_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'ner_spacy' : Sequence(feature=ClassLabel(num_classes=len(ner_spacy_tag_list), names=ner_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'dep_spacy' : Sequence(feature=ClassLabel(num_classes=len(dep_spacy_tag_list), names=dep_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'depth_spacy' : Sequence(feature=ClassLabel(num_classes=17, names= list(range(17)), names_file=None, id=None), length=-1, id=None),
                            'nearest_nugget_subtype' : Sequence(feature=ClassLabel(num_classes=len(event_nugget_tag_list), names=event_nugget_tag_list, names_file=None, id=None), length=-1, id=None),
                            'nearest_nugget_dist' : Sequence(feature=ClassLabel(num_classes=11, names=list(range(11)), names_file=None, id=None), length=-1, id=None),
                            'arg_nugget_relative_pos' : Sequence(feature=ClassLabel(num_classes=len(arg_nugget_relative_pos_tag_list), names=arg_nugget_relative_pos_tag_list, names_file=None, id=None), length=-1, id=None),
                            })

    dataset = Dataset.from_list(data, features=ner_features)
    tokenized_dataset_ner = dataset.map(tokenize_and_align_labels_with_pos_ner_dep, fn_kwargs={'tokenizer' : tokenizer}, batched=True, load_from_cache_file=False)
    tokenized_dataset_ner = tokenized_dataset_ner.with_format("torch")

    tokenized_dataset_ner = tokenized_dataset_ner.remove_columns("tokens")

    batch_size = 4 # Number of input texts
    dataloader = DataLoader(tokenized_dataset_ner, batch_size=batch_size)
    return dataloader, tokenized_dataset_ner

"""
Function: predict(dataloader)
Description: This function performs prediction on a given dataloader using a trained model for label classification.
Inputs:
    - dataloader: A DataLoader containing the input data for prediction.
Output:
    - predicted_label: A tensor containing the predicted labels for each input in the dataloader.
"""
def predict(dataloader):
    predicted_label = []
    for batch in dataloader:
        with torch.no_grad():
            logits = model_nugget(**batch)

        batch_predicted_label = logits.argmax(-1)
        predicted_label.append(batch_predicted_label)
    return torch.cat(predicted_label, dim=-1)

"""
Function: show_annotations(text_input)
Description: This function displays annotated event arguments in the provided input text.
Inputs:
    - text_input: The input text containing event arguments to be annotated and displayed.
Output:
    - An interactive display of annotated event arguments within the input text.
"""
def show_annotations(text_input):
    st.title("Event Arguments")

    dataloader, tokenized_dataset_ner = create_dataloader(text_input)
    predicted_label = predict(dataloader)

    for idx, labels in enumerate(predicted_label):
        token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]

        tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
        tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]

        text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
        idxs = get_idxs_from_text(text, tokens)

        labels = labels[token_mask]

        annotated_text_list = []
        last_label = ""
        cumulative_tokens = "" 
        last_id = 0

        for idx, label in zip(idxs, labels):
            to_label = event_args_list[label]
            label_short = to_label.split("-")[1] if "-" in to_label else to_label
            if last_label == label_short:
                cumulative_tokens += text[last_id : idx["end_idx"]]
                last_id = idx["end_idx"]
            else:
                if last_label != "":
                    if last_label == "O":
                        annotated_text_list.append(cumulative_tokens)
                    else:
                        annotated_text_list.append((cumulative_tokens, last_label))
                last_label = label_short
                cumulative_tokens = idx["word"]
                last_id = idx["end_idx"]
        if last_label == "O":
            annotated_text_list.append(cumulative_tokens)
        else:  
            annotated_text_list.append((cumulative_tokens, last_label))

        annotated_text(annotated_text_list)

"""
Function: get_event_args(text_input)
Description: This function extracts predicted event arguments (event nuggets) from the provided input text.
Inputs:
    - text_input: The input text containing event nuggets to be extracted.
Output:
    - predicted_event_nuggets: A list of dictionaries, each representing an extracted event nugget with start and end offsets,
      subtype, and text content.
"""
def get_event_args(text_input):
    dataloader, tokenized_dataset_ner = create_dataloader(text_input)
    predicted_label = predict(dataloader)

    predicted_event_nuggets = []
    text_length = 0 
    for idx, labels in enumerate(predicted_label):
        token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]

        tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
        tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]

        text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
        idxs = get_idxs_from_text(text_input[text_length : ], tokens)

        labels = labels[token_mask]

        start_idx = 0
        end_idx = 0
        last_label = ""

        for idx, label in zip(idxs, labels):
            to_label = event_args_list[label]
            if "-" in to_label:
                label_split = to_label.split("-")[1]
            else:
                label_split = to_label
            
            if label_split == last_label:
                end_idx = idx["end_idx"]
            else:
                if text_input[start_idx : end_idx] != "" and last_label != "O":
                    predicted_event_nuggets.append(
                        {
                            "startOffset" : text_length + start_idx,
                            "endOffset" : text_length + end_idx,
                            "subtype" : last_label,
                            "text" : text_input[text_length + start_idx : text_length + end_idx]
                        }
                    )
                start_idx = idx["start_idx"]
                end_idx = idx["start_idx"] + len(idx["word"])
            last_label = label_split
        text_length += idx["end_idx"]
    return predicted_event_nuggets