File size: 11,170 Bytes
4e38daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import spacy
import en_core_web_sm
from torch import nn
import math


device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

from transformers import AutoModel, TrainingArguments, Trainer, RobertaTokenizer, RobertaModel
from transformers import AutoTokenizer

model_checkpoint = "ehsanaghaei/SecureBERT"

tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)
roberta_model = RobertaModel.from_pretrained(model_checkpoint).to(device)

nlp = en_core_web_sm.load()
pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)
event_nugget_tag_list = ["Databreach", "Ransom", "PatchVulnerability", "Phishing", "DiscoverVulnerability"]
arg_nugget_relative_pos_tag_list = ["before-same-sentence", "before-differ-sentence", "after-same-sentence", "after-differ-sentence"]

class CustomRobertaWithPOS(nn.Module):
    def __init__(self, num_classes):
        super(CustomRobertaWithPOS, self).__init__()
        self.num_classes = num_classes

        self.pos_embed = nn.Embedding(len(pos_spacy_tag_list), 16)
        self.ner_embed = nn.Embedding(len(ner_spacy_tag_list), 8)
        self.dep_embed = nn.Embedding(len(dep_spacy_tag_list), 8)
        self.depth_embed = nn.Embedding(17, 8)
        self.subtype_embed = nn.Embedding(len(event_nugget_tag_list), 2)
        self.dist_embed = nn.Embedding(11, 6)
        self.relative_pos_embed = nn.Embedding(len(arg_nugget_relative_pos_tag_list), 2)

        self.roberta = roberta_model
        self.dropout1 = nn.Dropout(0.2)
        self.fc1 = nn.Linear(self.roberta.config.hidden_size + 50, num_classes)

    def forward(self, input_ids, attention_mask, pos_spacy, ner_spacy, dep_spacy, depth_spacy, nearest_nugget_subtype, nearest_nugget_dist, arg_nugget_relative_pos):
        outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
        last_hidden_output = outputs.last_hidden_state
        
        pooler_output = outputs.pooler_output
        pooler_output_unsqz = pooler_output.unsqueeze(1)
        pooler_output_fin = pooler_output_unsqz.expand(-1, last_hidden_output.shape[1], -1)


        pos_mask = pos_spacy != -100
        pos_embed_masked = self.pos_embed(pos_spacy[pos_mask])
        pos_embed = torch.zeros((pos_spacy.shape[0], pos_spacy.shape[1], 16), dtype=torch.float).to(device)
        pos_embed[pos_mask] = pos_embed_masked

        ner_mask = ner_spacy != -100
        ner_embed_masked = self.ner_embed(ner_spacy[ner_mask])
        ner_embed = torch.zeros((ner_spacy.shape[0], ner_spacy.shape[1], 8), dtype=torch.float).to(device)
        ner_embed[ner_mask] = ner_embed_masked

        dep_mask = dep_spacy != -100
        dep_embed_masked = self.dep_embed(dep_spacy[dep_mask])
        dep_embed = torch.zeros((dep_spacy.shape[0], dep_spacy.shape[1], 8), dtype=torch.float).to(device)
        dep_embed[dep_mask] = dep_embed_masked

        depth_mask = depth_spacy != -100
        depth_embed_masked = self.depth_embed(depth_spacy[depth_mask])
        depth_embed = torch.zeros((depth_spacy.shape[0], depth_spacy.shape[1], 8), dtype=torch.float).to(device)
        depth_embed[dep_mask] = depth_embed_masked

        nearest_nugget_subtype_mask = nearest_nugget_subtype != -100
        nearest_nugget_subtype_embed_masked = self.subtype_embed(nearest_nugget_subtype[nearest_nugget_subtype_mask])
        nearest_nugget_subtype_embed = torch.zeros((nearest_nugget_subtype.shape[0], nearest_nugget_subtype.shape[1], 2), dtype=torch.float).to(device)
        nearest_nugget_subtype_embed[dep_mask] = nearest_nugget_subtype_embed_masked

        nearest_nugget_dist_mask = nearest_nugget_dist != -100
        nearest_nugget_dist_embed_masked = self.dist_embed(nearest_nugget_dist[nearest_nugget_dist_mask])
        nearest_nugget_dist_embed = torch.zeros((nearest_nugget_dist.shape[0], nearest_nugget_dist.shape[1], 6), dtype=torch.float).to(device)
        nearest_nugget_dist_embed[dep_mask] = nearest_nugget_dist_embed_masked

        arg_nugget_relative_pos_mask = arg_nugget_relative_pos != -100
        arg_nugget_relative_pos_embed_masked = self.relative_pos_embed(arg_nugget_relative_pos[arg_nugget_relative_pos_mask])
        arg_nugget_relative_pos_embed = torch.zeros((arg_nugget_relative_pos.shape[0], arg_nugget_relative_pos.shape[1], 2), dtype=torch.float).to(device)
        arg_nugget_relative_pos_embed[dep_mask] = arg_nugget_relative_pos_embed_masked

        features_concat = torch.cat((last_hidden_output, pos_embed, ner_embed, dep_embed, depth_embed, nearest_nugget_subtype_embed, nearest_nugget_dist_embed, arg_nugget_relative_pos_embed), 2).to(device)
        features_concat = self.dropout1(features_concat)

        logits = self.fc1(features_concat)

        return logits


def tokenize_and_align_labels_with_pos_ner_dep(examples, tokenizer, label_all_tokens = True):
    tokenized_inputs = tokenizer(examples["tokens"], padding='max_length', truncation=True, is_split_into_words=True)
    #tokenized_inputs.pop('input_ids')
    ner_spacy = []
    pos_spacy = []
    dep_spacy = []
    depth_spacy = []
    nearest_nugget_subtype = []
    nearest_nugget_dist = []
    arg_nugget_relative_pos = []

    for i, (pos, ner, dep, depth, subtype, dist, relative_pos) in enumerate(zip(examples["pos_spacy"], 
                                                                                examples["ner_spacy"], 
                                                                                examples["dep_spacy"], 
                                                                                examples["depth_spacy"], 
                                                                                examples["nearest_nugget_subtype"], 
                                                                                examples["nearest_nugget_dist"], 
                                                                                examples["arg_nugget_relative_pos"])):
        word_ids = tokenized_inputs.word_ids(batch_index=i)
        previous_word_idx = None
        ner_spacy_ids = []
        pos_spacy_ids = []
        dep_spacy_ids = []
        depth_spacy_ids = []
        nearest_nugget_subtype_ids = []
        nearest_nugget_dist_ids = []
        arg_nugget_relative_pos_ids = []

        for word_idx in word_ids:
            # Special tokens have a word id that is None. We set the label to -100 so they are automatically
            # ignored in the loss function.
            if word_idx is None:
                ner_spacy_ids.append(-100)
                pos_spacy_ids.append(-100)
                dep_spacy_ids.append(-100)
                depth_spacy_ids.append(-100)
                nearest_nugget_subtype_ids.append(-100)
                nearest_nugget_dist_ids.append(-100)
                arg_nugget_relative_pos_ids.append(-100)
            # We set the label for the first token of each word.
            elif word_idx != previous_word_idx:
                ner_spacy_ids.append(ner[word_idx])
                pos_spacy_ids.append(pos[word_idx])
                dep_spacy_ids.append(dep[word_idx])
                depth_spacy_ids.append(depth[word_idx])
                nearest_nugget_subtype_ids.append(subtype[word_idx])
                nearest_nugget_dist_ids.append(dist[word_idx])
                arg_nugget_relative_pos_ids.append(relative_pos[word_idx])
            # For the other tokens in a word, we set the label to either the current label or -100, depending on
            # the label_all_tokens flag.
            else:
                ner_spacy_ids.append(ner[word_idx] if label_all_tokens else -100)
                pos_spacy_ids.append(pos[word_idx] if label_all_tokens else -100)
                dep_spacy_ids.append(dep[word_idx] if label_all_tokens else -100)
                depth_spacy_ids.append(depth[word_idx] if label_all_tokens else -100)
                nearest_nugget_subtype_ids.append(subtype[word_idx] if label_all_tokens else -100)
                nearest_nugget_dist_ids.append(dist[word_idx] if label_all_tokens else -100)
                arg_nugget_relative_pos_ids.append(relative_pos[word_idx] if label_all_tokens else -100)
            previous_word_idx = word_idx

        ner_spacy.append(ner_spacy_ids)
        pos_spacy.append(pos_spacy_ids)
        dep_spacy.append(dep_spacy_ids)
        depth_spacy.append(depth_spacy_ids)
        nearest_nugget_subtype.append(nearest_nugget_subtype_ids)
        nearest_nugget_dist.append(nearest_nugget_dist_ids)
        arg_nugget_relative_pos.append(arg_nugget_relative_pos_ids)

    tokenized_inputs["pos_spacy"] = pos_spacy
    tokenized_inputs["ner_spacy"] = ner_spacy
    tokenized_inputs["dep_spacy"] = dep_spacy
    tokenized_inputs["depth_spacy"] = depth_spacy
    tokenized_inputs["nearest_nugget_subtype"] = nearest_nugget_subtype
    tokenized_inputs["nearest_nugget_dist"] = nearest_nugget_dist
    tokenized_inputs["arg_nugget_relative_pos"] = arg_nugget_relative_pos 
    return tokenized_inputs

def find_nearest_nugget_features(doc, start_idx, end_idx, event_nuggets):
            nearest_subtype = None
            nearest_dist = math.inf
            relative_pos = None

            mid_idx = (end_idx + start_idx) / 2
            for nugget in event_nuggets:
                mid_nugget_idx = (nugget["startOffset"] + nugget["endOffset"]) / 2
                dist = abs(mid_nugget_idx - mid_idx)

                if dist < nearest_dist:
                    nearest_dist = dist
                    nearest_subtype = nugget["subtype"]
                    for sent in doc.sents:
                        if between_idxs(mid_idx, sent.start_char, sent.end_char) and between_idxs(mid_nugget_idx, sent.start_char, sent.end_char):
                            if mid_idx < mid_nugget_idx:
                                relative_pos = "before-same-sentence"
                            else:
                                relative_pos = "after-same-sentence"
                            break
                        elif between_idxs(mid_nugget_idx, sent.start_char, sent.end_char) and mid_idx > mid_nugget_idx:
                            relative_pos = "after-differ-sentence"
                            break
                        elif between_idxs(mid_idx, sent.start_char, sent.end_char) and mid_idx < mid_nugget_idx:
                            relative_pos = "before-differ-sentence"
                            break
            
            nearest_dist = int(min(10, nearest_dist // 20))
            return nearest_subtype, nearest_dist, relative_pos

def find_dep_depth(token):
            depth = 0
            current_token = token
            while current_token.head != current_token:
                depth += 1
                current_token = current_token.head
            return min(depth, 16)
        
def between_idxs(idx, start_idx, end_idx):
    return idx >= start_idx and idx <= end_idx