File size: 10,745 Bytes
4e38daf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import streamlit as st
from annotated_text import annotated_text
import torch
from torch import nn
from torch.utils.data import DataLoader
from cybersecurity_knowledge_graph.nugget_model_utils import CustomRobertaWithPOS as NuggetModel
from cybersecurity_knowledge_graph.nugget_model_utils import tokenize_and_align_labels_with_pos_ner_dep, find_nearest_nugget_features, find_dep_depth
from cybersecurity_knowledge_graph.utils import get_idxs_from_text, event_nugget_list
import spacy
from transformers import AutoTokenizer
from datasets import load_dataset, Features, ClassLabel, Value, Sequence, Dataset
import os


os.environ["TOKENIZERS_PARALLELISM"] = "true"

def find_dep_depth(token):
    depth = 0
    current_token = token
    while current_token.head != current_token:
        depth += 1
        current_token = current_token.head
    return min(depth, 16)


nlp = spacy.load('en_core_web_sm')

pos_spacy_tag_list = ["ADJ","ADP","ADV","AUX","CCONJ","DET","INTJ","NOUN","NUM","PART","PRON","PROPN","PUNCT","SCONJ","SYM","VERB","SPACE","X"]
ner_spacy_tag_list = [bio + entity for entity in list(nlp.get_pipe('ner').labels) for bio in ["B-", "I-"]] + ["O"]
dep_spacy_tag_list = list(nlp.get_pipe("parser").labels)

device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

model_checkpoint = "ehsanaghaei/SecureBERT"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, add_prefix_space=True)

model_nugget = NuggetModel(num_classes = 11)
model_nugget.load_state_dict(torch.load("cybersecurity_knowledge_graph/nugget_model_state_dict.pth", map_location=device))  
model_nugget.eval()

"""
Function: create_dataloader(text_input)
Description: This function prepares a DataLoader for processing text input, including tokenization and alignment of labels.
Inputs:
    - text_input: The input text to be processed.
Output:
    - dataloader: A DataLoader for the tokenized and batched text data.
    - tokenized_dataset_ner: The tokenized dataset used for training.
"""
def create_dataloader(text_input):

    doc = nlp(text_input)

    content_as_words_emdash = [tok.text for tok in doc]
    content_as_words_emdash = [word.replace("``", '"').replace("''", '"').replace("$", "") for word in content_as_words_emdash]
    content_idx_dict = get_idxs_from_text(text_input, content_as_words_emdash)

    data = []

    words = []

    pos_spacy = [tok.pos_ for tok in doc]
    ner_spacy = [ent.ent_iob_ + "-" + ent.ent_type_ if ent.ent_iob_ != "O" else ent.ent_iob_ for ent in doc]
    dep_spacy = [tok.dep_ for tok in doc]
    depth_spacy = [find_dep_depth(tok) for tok in doc]

    for content_dict in content_idx_dict:
        start_idx, end_idx = content_dict["start_idx"], content_dict["end_idx"]
        words.append(content_dict["word"])


    content_token_len = len(tokenizer(words, truncation=False, is_split_into_words=True)["input_ids"])
    if content_token_len > tokenizer.model_max_length:
        no_split = (content_token_len // tokenizer.model_max_length) + 2
        split_len = (len(words) // no_split) + 1

        last_id = 0
        threshold = split_len

        for id, token in enumerate(words):
            if token == "." and id > threshold:
                data.append(
                    {
                        "tokens" : words[last_id : id + 1],
                        "pos_spacy" : pos_spacy[last_id : id + 1],
                        "ner_spacy" : ner_spacy[last_id : id + 1],
                        "dep_spacy" : dep_spacy[last_id : id + 1],
                        "depth_spacy" : depth_spacy[last_id : id + 1],
                    }
                )
                last_id = id + 1
                threshold += split_len
        data.append({"tokens" : words[last_id : ],
                     "pos_spacy" : pos_spacy[last_id : ],
                     "ner_spacy" : ner_spacy[last_id : ],
                     "dep_spacy" : dep_spacy[last_id : ],
                     "depth_spacy" : depth_spacy[last_id : ]}) 
    else:
        data.append(
            {
                "tokens" : words,
                "pos_spacy" : pos_spacy,
                "ner_spacy" : ner_spacy,
                "dep_spacy" : dep_spacy,
                "depth_spacy" : depth_spacy
            }
        )


    ner_features = Features({'tokens' : Sequence(feature=Value(dtype='string', id=None), length=-1, id=None),
                            'pos_spacy' : Sequence(feature=ClassLabel(num_classes=len(pos_spacy_tag_list), names=pos_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'ner_spacy' : Sequence(feature=ClassLabel(num_classes=len(ner_spacy_tag_list), names=ner_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'dep_spacy' : Sequence(feature=ClassLabel(num_classes=len(dep_spacy_tag_list), names=dep_spacy_tag_list, names_file=None, id=None), length=-1, id=None),
                            'depth_spacy' : Sequence(feature=ClassLabel(num_classes=17, names= list(range(17)), names_file=None, id=None), length=-1, id=None)
                            })

    dataset = Dataset.from_list(data, features=ner_features)
    tokenized_dataset_ner = dataset.map(tokenize_and_align_labels_with_pos_ner_dep, fn_kwargs={'tokenizer' : tokenizer}, batched=True, load_from_cache_file=False)
    tokenized_dataset_ner = tokenized_dataset_ner.with_format("torch")

    tokenized_dataset_ner = tokenized_dataset_ner.remove_columns("tokens")

    batch_size = 4 # Number of input texts
    dataloader = DataLoader(tokenized_dataset_ner, batch_size=batch_size)
    # TODO : context_idx_dict should be used to index the words
    return dataloader, tokenized_dataset_ner

"""
Function: predict(dataloader)
Description: This function performs inference on a given DataLoader using a trained model and returns the predicted labels.
Inputs:
    - dataloader: A DataLoader containing input data for prediction.
Output:
    - predicted_label: A tensor containing the predicted labels for the input data.
"""
def predict(dataloader):
    predicted_label = []
    for batch in dataloader:
        with torch.no_grad():
            logits = model_nugget(**batch)
        batch_predicted_label = logits.argmax(-1)
        predicted_label.append(batch_predicted_label)
    return torch.cat(predicted_label, dim=-1)

"""
Function: show_annotations(text_input)
Description: This function displays annotated event nuggets in the provided input text using the Streamlit library.
Inputs:
    - text_input: The input text containing event nuggets to be annotated and displayed.
Output:
    - An interactive display of annotated event nuggets within the input text.
"""
def show_annotations(text_input):
    st.title("Event Nuggets")

    dataloader, tokenized_dataset_ner = create_dataloader(text_input)
    predicted_label = predict(dataloader)

    for idx, labels in enumerate(predicted_label):
        token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]

        tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
        tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]

        text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
        idxs = get_idxs_from_text(text, tokens)

        labels = labels[token_mask]

        annotated_text_list = []
        last_label = ""
        cumulative_tokens = "" 
        last_id = 0

        for idx, label in zip(idxs, labels):
            to_label = event_nugget_list[label]
            label_short = to_label.split("-")[1] if "-" in to_label else to_label
            if last_label == label_short:
                cumulative_tokens += text[last_id : idx["end_idx"]]
                last_id = idx["end_idx"]
            else:
                if last_label != "":
                    if last_label == "O":
                        annotated_text_list.append(cumulative_tokens)
                    else:
                        annotated_text_list.append((cumulative_tokens, last_label))
                last_label = label_short
                cumulative_tokens = idx["word"]
                last_id = idx["end_idx"]
        if last_label == "O":
            annotated_text_list.append(cumulative_tokens)
        else:  
            annotated_text_list.append((cumulative_tokens, last_label))
        annotated_text(annotated_text_list)

"""
Function: get_event_nuggets(text_input)
Description: This function extracts predicted event nuggets (event entities) from the provided input text.
Inputs:
    - text_input: The input text containing event nuggets to be extracted.
Output:
    - predicted_event_nuggets: A list of dictionaries, each representing an extracted event nugget with start and end offsets,
      subtype, and text content.
"""
def get_event_nuggets(text_input):
    dataloader, tokenized_dataset_ner = create_dataloader(text_input)
    predicted_label = predict(dataloader)

    predicted_event_nuggets = []
    text_length = 0 
    for idx, labels in enumerate(predicted_label):
        token_mask = [token > 2 for token in tokenized_dataset_ner[idx]["input_ids"]]

        tokens = tokenizer.convert_ids_to_tokens(tokenized_dataset_ner[idx]["input_ids"][token_mask], skip_special_tokens=True)
        tokens = [token.replace("Ġ", "").replace("Ċ", "").replace("âĢĻ", "'") for token in tokens]

        text = tokenizer.decode(tokenized_dataset_ner[idx]["input_ids"][token_mask])
        idxs = get_idxs_from_text(text_input[text_length : ], tokens)
        
        labels = labels[token_mask]

        start_idx = 0
        end_idx = 0
        last_label = ""

        for idx, label in zip(idxs, labels):
            to_label = event_nugget_list[label]
            label_short = to_label.split("-")[1] if "-" in to_label else to_label
            
            if label_short == last_label:
                end_idx = idx["end_idx"]
            else:
                if text_input[start_idx : end_idx] != "" and last_label != "O":
                    predicted_event_nuggets.append(
                        {
                            "startOffset" : text_length + start_idx,
                            "endOffset" : text_length + end_idx,
                            "subtype" : last_label,
                            "text" : text_input[text_length + start_idx : text_length + end_idx]
                        }
                    )
                start_idx = idx["start_idx"]
                end_idx = idx["start_idx"] + len(idx["word"])
            last_label = label_short
        
        text_length += idx["end_idx"]
    return predicted_event_nuggets