File size: 1,343 Bytes
6e15d62 4df025f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
This model is used to determine if a domain name is malicious or not.
It should be used only as a suggestion as it does have some false positives, especialy on domains
from other countries.
---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Cubicz/autotrain-data-domain-filer-2
co2_eq_emissions:
emissions: 2.854698438703003
---
# Model Trained Using AutoTrain
- Problem type: Binary Classification
- Model ID: 3436193686
- CO2 Emissions (in grams): 2.8547
## Validation Metrics
- Loss: 0.124
- Accuracy: 0.967
- Precision: 0.963
- Recall: 0.963
- AUC: 0.991
- F1: 0.963
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Cubicz/autotrain-domain-filer-2-3436193686
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("Cubicz/autotrain-domain-filer-2-3436193686", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("Cubicz/autotrain-domain-filer-2-3436193686", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
``` |