File size: 1,343 Bytes
6e15d62
 
 
 
 
 
 
 
 
 
 
 
4df025f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
This model is used to determine if a domain name is malicious or not.
It should be used only as a suggestion as it does have some false positives, especialy on domains
from other countries.









---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- Cubicz/autotrain-data-domain-filer-2
co2_eq_emissions:
  emissions: 2.854698438703003
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 3436193686
- CO2 Emissions (in grams): 2.8547

## Validation Metrics

- Loss: 0.124
- Accuracy: 0.967
- Precision: 0.963
- Recall: 0.963
- AUC: 0.991
- F1: 0.963

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/Cubicz/autotrain-domain-filer-2-3436193686
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("Cubicz/autotrain-domain-filer-2-3436193686", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("Cubicz/autotrain-domain-filer-2-3436193686", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```