MiniGPT / train_custom.py
CreatedNull's picture
Upload folder using huggingface_hub
79eec1d verified
import torch
from dataset import MiniBPETokenizr, ChatDataset, train, SimpleTokenizr # SimpleTokenizr might be unused now
from model import MiniGPT
import json
from tokenizers import Tokenizer, models, trainers, pre_tokenizers, normalizers
from tokenizers.trainers import BpeTrainer
from tokenizers.normalizers import Lowercase, NFD, StripAccents
from tokenizers.pre_tokenizers import Whitespace
# For debugging purposes, turn on anomaly detection for gradients
torch.autograd.set_detect_anomaly(True)
# Load training data
# NOTE: For underfitting on "10 examples", ensure this file *only* contains those 10 examples,
# and they are long enough (as you confirmed).
with open("./data/overfit_data.jsonl", "r", encoding="utf-8") as f:
texts = [(json.loads(line)["input"] + ' ' + json.loads(line)["output"]) for line in f if line.strip()]
def main():
# ๐Ÿง  Initialize HuggingFace BPE tokenizer
tokenizer = Tokenizer(models.BPE(unk_token="<UNK>"))
tokenizer.normalizer = normalizers.Sequence([Lowercase(), NFD(), StripAccents()])
tokenizer.pre_tokenizer = Whitespace()
# ๐Ÿ› ๏ธ BPE Training
trainer = BpeTrainer(
vocab_size=28517,
special_tokens=["<PAD>", "<UNK>", "<END>", "^User:", "MiniGPT:"]
)
tokenizer.train_from_iterator(texts, trainer)
# ๐Ÿ’พ Save tokenizer
tokenizer.save("./trained-mini-gpt/tokenizer.json")
hf_tokenizer = Tokenizer.from_file("./trained-mini-gpt/tokenizer.json")
# ๐Ÿงพ Dataset & Model Init
dataset = ChatDataset(
data="./data/overfit_data.jsonl", # Ensure this path points to your 10-example dataset for testing
tokenizer=hf_tokenizer
)
model = MiniGPT(vocab_size=hf_tokenizer.get_vocab_size())
model.reset_params()
# ๐Ÿš‚ Train
# ๐ŸŽฏ CHANGE 2: Pass an increased learning rate (e.g., 1e-4) to the train function.
# Set epochs to a high number for clear overfitting.
train(model, dataset, hf_tokenizer, epochs=200, filepathh="./data/merged_data.jsonl", learning_rate=1e-4)
if __name__ == "__main__":
main()