File size: 18,643 Bytes
c165cd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
import glob
import logging
import os
import shutil
import sys
import numpy as np
import random
import time
from absl import app
import gin
from internal import configs
from internal import datasets
from internal import image
from internal import models
from internal import train_utils
from internal import utils
from internal import vis
from internal import checkpoints
import torch
import accelerate
import tensorboardX
from tqdm import tqdm
from tqdm.contrib.logging import logging_redirect_tqdm
from torch.utils._pytree import tree_map
configs.define_common_flags()
TIME_PRECISION = 1000 # Internally represent integer times in milliseconds.
def main(unused_argv):
config = configs.load_config()
config.exp_path = os.path.join("exp", config.exp_name)
config.checkpoint_dir = os.path.join(config.exp_path, 'checkpoints')
utils.makedirs(config.exp_path)
with utils.open_file(os.path.join(config.exp_path, 'config.gin'), 'w') as f:
f.write(gin.config_str())
# accelerator for DDP
accelerator = accelerate.Accelerator()
# setup logger
logging.basicConfig(
format="%(asctime)s: %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
force=True,
handlers=[logging.StreamHandler(sys.stdout),
logging.FileHandler(os.path.join(config.exp_path, 'log_train.txt'))],
level=logging.INFO,
)
sys.excepthook = utils.handle_exception
logger = accelerate.logging.get_logger(__name__)
logger.info(config)
logger.info(accelerator.state, main_process_only=False)
config.world_size = accelerator.num_processes
config.global_rank = accelerator.process_index
if config.batch_size % accelerator.num_processes != 0:
config.batch_size -= config.batch_size % accelerator.num_processes != 0
logger.info('turn batch size to', config.batch_size)
# Set random seed.
accelerate.utils.set_seed(config.seed, device_specific=True)
# setup model and optimizer
model = models.Model(config=config)
optimizer, lr_fn = train_utils.create_optimizer(config, model)
# load dataset
dataset = datasets.load_dataset('train', config.data_dir, config)
test_dataset = datasets.load_dataset('test', config.data_dir, config)
dataloader = torch.utils.data.DataLoader(np.arange(len(dataset)),
num_workers=8,
shuffle=True,
batch_size=1,
collate_fn=dataset.collate_fn,
persistent_workers=True,
)
test_dataloader = torch.utils.data.DataLoader(np.arange(len(test_dataset)),
num_workers=4,
shuffle=False,
batch_size=1,
persistent_workers=True,
collate_fn=test_dataset.collate_fn,
)
if config.rawnerf_mode:
postprocess_fn = test_dataset.metadata['postprocess_fn']
else:
postprocess_fn = lambda z, _=None: z
# use accelerate to prepare.
model, dataloader, optimizer = accelerator.prepare(model, dataloader, optimizer)
if config.resume_from_checkpoint:
init_step = checkpoints.restore_checkpoint(config.checkpoint_dir, accelerator, logger)
else:
init_step = 0
module = accelerator.unwrap_model(model)
dataiter = iter(dataloader)
test_dataiter = iter(test_dataloader)
num_params = train_utils.tree_len(list(model.parameters()))
logger.info(f'Number of parameters being optimized: {num_params}')
if (dataset.size > module.num_glo_embeddings and module.num_glo_features > 0):
raise ValueError(f'Number of glo embeddings {module.num_glo_embeddings} '
f'must be at least equal to number of train images '
f'{dataset.size}')
# metric handler
metric_harness = image.MetricHarness()
# tensorboard
if accelerator.is_main_process:
summary_writer = tensorboardX.SummaryWriter(config.exp_path)
# function to convert image for tensorboard
tb_process_fn = lambda x: x.transpose(2, 0, 1) if len(x.shape) == 3 else x[None]
if config.rawnerf_mode:
for name, data in zip(['train', 'test'], [dataset, test_dataset]):
# Log shutter speed metadata in TensorBoard for debug purposes.
for key in ['exposure_idx', 'exposure_values', 'unique_shutters']:
summary_writer.add_text(f'{name}_{key}', str(data.metadata[key]), 0)
logger.info("Begin training...")
step = init_step + 1
total_time = 0
total_steps = 0
reset_stats = True
if config.early_exit_steps is not None:
num_steps = config.early_exit_steps
else:
num_steps = config.max_steps
init_step = 0
with logging_redirect_tqdm():
tbar = tqdm(range(init_step + 1, num_steps + 1),
desc='Training', initial=init_step, total=num_steps,
disable=not accelerator.is_main_process)
for step in tbar:
try:
batch = next(dataiter)
except StopIteration:
dataiter = iter(dataloader)
batch = next(dataiter)
batch = accelerate.utils.send_to_device(batch, accelerator.device)
if reset_stats and accelerator.is_main_process:
stats_buffer = []
train_start_time = time.time()
reset_stats = False
# use lr_fn to control learning rate
learning_rate = lr_fn(step)
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
# fraction of training period
train_frac = np.clip((step - 1) / (config.max_steps - 1), 0, 1)
# Indicates whether we need to compute output normal or depth maps in 2D.
compute_extras = (config.compute_disp_metrics or config.compute_normal_metrics)
optimizer.zero_grad()
with accelerator.autocast():
renderings, ray_history = model(
True,
batch,
train_frac=train_frac,
compute_extras=compute_extras,
zero_glo=False)
losses = {}
# supervised by data
data_loss, stats = train_utils.compute_data_loss(batch, renderings, config)
losses['data'] = data_loss
# interlevel loss in MipNeRF360
if config.interlevel_loss_mult > 0 and not module.single_mlp:
losses['interlevel'] = train_utils.interlevel_loss(ray_history, config)
# interlevel loss in ZipNeRF360
if config.anti_interlevel_loss_mult > 0 and not module.single_mlp:
losses['anti_interlevel'] = train_utils.anti_interlevel_loss(ray_history, config)
# distortion loss
if config.distortion_loss_mult > 0:
losses['distortion'] = train_utils.distortion_loss(ray_history, config)
# opacity loss
if config.opacity_loss_mult > 0:
losses['opacity'] = train_utils.opacity_loss(renderings, config)
# orientation loss in RefNeRF
if (config.orientation_coarse_loss_mult > 0 or
config.orientation_loss_mult > 0):
losses['orientation'] = train_utils.orientation_loss(batch, module, ray_history,
config)
# hash grid l2 weight decay
if config.hash_decay_mults > 0:
losses['hash_decay'] = train_utils.hash_decay_loss(ray_history, config)
# normal supervision loss in RefNeRF
if (config.predicted_normal_coarse_loss_mult > 0 or
config.predicted_normal_loss_mult > 0):
losses['predicted_normals'] = train_utils.predicted_normal_loss(
module, ray_history, config)
loss = sum(losses.values())
stats['loss'] = loss.item()
stats['losses'] = tree_map(lambda x: x.item(), losses)
# accelerator automatically handle the scale
accelerator.backward(loss)
# clip gradient by max/norm/nan
train_utils.clip_gradients(model, accelerator, config)
optimizer.step()
stats['psnrs'] = image.mse_to_psnr(stats['mses'])
stats['psnr'] = stats['psnrs'][-1]
# Log training summaries. This is put behind a host_id check because in
# multi-host evaluation, all hosts need to run inference even though we
# only use host 0 to record results.
if accelerator.is_main_process:
stats_buffer.append(stats)
if step == init_step + 1 or step % config.print_every == 0:
elapsed_time = time.time() - train_start_time
steps_per_sec = config.print_every / elapsed_time
rays_per_sec = config.batch_size * steps_per_sec
# A robust approximation of total training time, in case of pre-emption.
total_time += int(round(TIME_PRECISION * elapsed_time))
total_steps += config.print_every
approx_total_time = int(round(step * total_time / total_steps))
# Transpose and stack stats_buffer along axis 0.
fs = [utils.flatten_dict(s, sep='/') for s in stats_buffer]
stats_stacked = {k: np.stack([f[k] for f in fs]) for k in fs[0].keys()}
# Split every statistic that isn't a vector into a set of statistics.
stats_split = {}
for k, v in stats_stacked.items():
if v.ndim not in [1, 2] and v.shape[0] != len(stats_buffer):
raise ValueError('statistics must be of size [n], or [n, k].')
if v.ndim == 1:
stats_split[k] = v
elif v.ndim == 2:
for i, vi in enumerate(tuple(v.T)):
stats_split[f'{k}/{i}'] = vi
# Summarize the entire histogram of each statistic.
for k, v in stats_split.items():
summary_writer.add_histogram('train_' + k, v, step)
# Take the mean and max of each statistic since the last summary.
avg_stats = {k: np.mean(v) for k, v in stats_split.items()}
max_stats = {k: np.max(v) for k, v in stats_split.items()}
summ_fn = lambda s, v: summary_writer.add_scalar(s, v, step) # pylint:disable=cell-var-from-loop
# Summarize the mean and max of each statistic.
for k, v in avg_stats.items():
summ_fn(f'train_avg_{k}', v)
for k, v in max_stats.items():
summ_fn(f'train_max_{k}', v)
summ_fn('train_num_params', num_params)
summ_fn('train_learning_rate', learning_rate)
summ_fn('train_steps_per_sec', steps_per_sec)
summ_fn('train_rays_per_sec', rays_per_sec)
summary_writer.add_scalar('train_avg_psnr_timed', avg_stats['psnr'],
total_time // TIME_PRECISION)
summary_writer.add_scalar('train_avg_psnr_timed_approx', avg_stats['psnr'],
approx_total_time // TIME_PRECISION)
if dataset.metadata is not None and module.learned_exposure_scaling:
scalings = module.exposure_scaling_offsets.weight
num_shutter_speeds = dataset.metadata['unique_shutters'].shape[0]
for i_s in range(num_shutter_speeds):
for j_s, value in enumerate(scalings[i_s]):
summary_name = f'exposure/scaling_{i_s}_{j_s}'
summary_writer.add_scalar(summary_name, value, step)
precision = int(np.ceil(np.log10(config.max_steps))) + 1
avg_loss = avg_stats['loss']
avg_psnr = avg_stats['psnr']
str_losses = { # Grab each "losses_{x}" field and print it as "x[:4]".
k[7:11]: (f'{v:0.5f}' if 1e-4 <= v < 10 else f'{v:0.1e}')
for k, v in avg_stats.items()
if k.startswith('losses/')
}
logger.info(f'{step}' + f'/{config.max_steps:d}:' +
f'loss={avg_loss:0.5f},' + f'psnr={avg_psnr:.3f},' +
f'lr={learning_rate:0.2e} | ' +
','.join([f'{k}={s}' for k, s in str_losses.items()]) +
f',{rays_per_sec:0.0f} r/s')
# Reset everything we are tracking between summarizations.
reset_stats = True
if step > 0 and step % config.checkpoint_every == 0 and accelerator.is_main_process:
checkpoints.save_checkpoint(config.checkpoint_dir,
accelerator, step,
config.checkpoints_total_limit)
# Test-set evaluation.
if config.train_render_every > 0 and step % config.train_render_every == 0:
# We reuse the same random number generator from the optimization step
# here on purpose so that the visualization matches what happened in
# training.
eval_start_time = time.time()
try:
test_batch = next(test_dataiter)
except StopIteration:
test_dataiter = iter(test_dataloader)
test_batch = next(test_dataiter)
test_batch = accelerate.utils.send_to_device(test_batch, accelerator.device)
# render a single image with all distributed processes
rendering = models.render_image(model, accelerator,
test_batch, False,
train_frac, config)
# move to numpy
rendering = tree_map(lambda x: x.detach().cpu().numpy(), rendering)
test_batch = tree_map(lambda x: x.detach().cpu().numpy() if x is not None else None, test_batch)
# Log eval summaries on host 0.
if accelerator.is_main_process:
eval_time = time.time() - eval_start_time
num_rays = np.prod(test_batch['directions'].shape[:-1])
rays_per_sec = num_rays / eval_time
summary_writer.add_scalar('test_rays_per_sec', rays_per_sec, step)
metric_start_time = time.time()
metric = metric_harness(
postprocess_fn(rendering['rgb']), postprocess_fn(test_batch['rgb']))
logger.info(f'Eval {step}: {eval_time:0.3f}s, {rays_per_sec:0.0f} rays/sec')
logger.info(f'Metrics computed in {(time.time() - metric_start_time):0.3f}s')
for name, val in metric.items():
if not np.isnan(val):
logger.info(f'{name} = {val:.4f}')
summary_writer.add_scalar('train_metrics/' + name, val, step)
if config.vis_decimate > 1:
d = config.vis_decimate
decimate_fn = lambda x, d=d: None if x is None else x[::d, ::d]
else:
decimate_fn = lambda x: x
rendering = tree_map(decimate_fn, rendering)
test_batch = tree_map(decimate_fn, test_batch)
vis_start_time = time.time()
vis_suite = vis.visualize_suite(rendering, test_batch)
with tqdm.external_write_mode():
logger.info(f'Visualized in {(time.time() - vis_start_time):0.3f}s')
if config.rawnerf_mode:
# Unprocess raw output.
vis_suite['color_raw'] = rendering['rgb']
# Autoexposed colors.
vis_suite['color_auto'] = postprocess_fn(rendering['rgb'], None)
summary_writer.add_image('test_true_auto',
tb_process_fn(postprocess_fn(test_batch['rgb'], None)), step)
# Exposure sweep colors.
exposures = test_dataset.metadata['exposure_levels']
for p, x in list(exposures.items()):
vis_suite[f'color/{p}'] = postprocess_fn(rendering['rgb'], x)
summary_writer.add_image(f'test_true_color/{p}',
tb_process_fn(postprocess_fn(test_batch['rgb'], x)), step)
summary_writer.add_image('test_true_color', tb_process_fn(test_batch['rgb']), step)
if config.compute_normal_metrics:
summary_writer.add_image('test_true_normals',
tb_process_fn(test_batch['normals']) / 2. + 0.5, step)
for k, v in vis_suite.items():
summary_writer.add_image('test_output_' + k, tb_process_fn(v), step)
if accelerator.is_main_process and config.max_steps > init_step:
logger.info('Saving last checkpoint at step {} to {}'.format(step, config.checkpoint_dir))
checkpoints.save_checkpoint(config.checkpoint_dir,
accelerator, step,
config.checkpoints_total_limit)
logger.info('Finish training.')
if __name__ == '__main__':
with gin.config_scope('train'):
app.run(main)
|