File size: 8,870 Bytes
b393d11 b57c535 b393d11 c165cd8 b393d11 c165cd8 b393d11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
license: apache-2.0
tags:
- code
pipeline_tag: depth-estimation
---
# ZipNeRF
An unofficial pytorch implementation of
"Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields"
[https://arxiv.org/abs/2304.06706](https://arxiv.org/abs/2304.06706).
This work is based on [multinerf](https://github.com/google-research/multinerf), so features in refnerf,rawnerf,mipnerf360 are also available.
## Credit
Initial Code from [SuLvXiangXin](https://github.com/SuLvXiangXin/zipnerf-pytorch)
## Results
New results(5.27):
360_v2:
https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/2b276e48-2dc4-4508-8441-e90ec963f7d9
360_v2_glo:(fewer floaters, but worse metric)
https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/bddb5610-2a4f-4981-8e17-71326a24d291
mesh results(5.27):
![mesh](https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/35866fa7-fe6a-44fe-9590-05d594bdb8cd)
Mipnerf360(PSNR):
| | bicycle | garden | stump | room | counter | kitchen | bonsai |
|:---------:|:-------:|:------:|:-----:|:-----:|:-------:|:-------:|:------:|
| Paper | 25.80 | 28.20 | 27.55 | 32.65 | 29.38 | 32.50 | 34.46 |
| This repo | 25.44 | 27.98 | 26.75 | 32.13 | 29.10 | 32.63 | 34.20 |
Blender(PSNR):
| | chair | drums | ficus | hotdog | lego | materials | mic | ship |
|:---------:|:-----:|:-----:|:-----:|:------:|:-----:|:---------:|:-----:|:-----:|
| Paper | 34.84 | 25.84 | 33.90 | 37.14 | 34.84 | 31.66 | 35.15 | 31.38 |
| This repo | 35.26 | 25.51 | 32.66 | 36.56 | 35.04 | 29.43 | 34.93 | 31.38 |
For Mipnerf360 dataset, the model is trained with a downsample factor of 4 for outdoor scene and 2 for indoor scene(same as in paper).
Training speed is about 1.5x slower than paper(1.5 hours on 8 A6000).
The hash decay loss seems to have little effect(?), as many floaters can be found in the final results in both experiments (especially in Blender).
## Install
```
# Clone the repo.
git clone https://github.com/SuLvXiangXin/zipnerf-pytorch.git
cd zipnerf-pytorch
# Make a conda environment.
conda create --name zipnerf python=3.9
conda activate zipnerf
# Install requirements.
pip install -r requirements.txt
# Install other extensions
pip install ./gridencoder
# Install nvdiffrast (optional, for textured mesh)
git clone https://github.com/NVlabs/nvdiffrast
pip install ./nvdiffrast
# Install a specific cuda version of torch_scatter
# see more detail at https://github.com/rusty1s/pytorch_scatter
CUDA=cu117
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
```
## Dataset
[mipnerf360](http://storage.googleapis.com/gresearch/refraw360/360_v2.zip)
[refnerf](https://storage.googleapis.com/gresearch/refraw360/ref.zip)
[nerf_synthetic](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1)
[nerf_llff_data](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1)
```
mkdir data
cd data
# e.g. mipnerf360 data
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip 360_v2.zip
```
## Train
```
# Configure your training (DDP? fp16? ...)
# see https://huggingface.co/docs/accelerate/index for details
accelerate config
# Where your data is
DATA_DIR=data/360_v2/bicycle
EXP_NAME=360_v2/bicycle
# Experiment will be conducted under "exp/${EXP_NAME}" folder
# "--gin_configs=configs/360.gin" can be seen as a default config
# and you can add specific config useing --gin_bindings="..."
accelerate launch train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# or you can also run without accelerate (without DDP)
CUDA_VISIBLE_DEVICES=0 python train.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example training script
bash scripts/train_360.sh
# blender dataset
bash scripts/train_blender.sh
# metric, render image, etc can be viewed through tensorboard
tensorboard --logdir "exp/${EXP_NAME}"
```
### Render
Rendering results can be found in the directory `exp/${EXP_NAME}/render`
```
accelerate launch render.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.render_path = True" \
--gin_bindings="Config.render_path_frames = 480" \
--gin_bindings="Config.render_video_fps = 60" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example rendering script
bash scripts/render_360.sh
```
## Evaluate
Evaluating results can be found in the directory `exp/${EXP_NAME}/test_preds`
```
# using the same exp_name as in training
accelerate launch eval.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example evaluating script
bash scripts/eval_360.sh
```
## Extract mesh
Mesh results can be found in the directory `exp/${EXP_NAME}/mesh`
```
# more configuration can be found in internal/configs.py
accelerate launch extract.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# --gin_bindings="Config.mesh_radius = 1" # (optional) smaller for more details e.g. 0.2 in bicycle scene
# --gin_bindings="Config.isosurface_threshold = 20" # (optional) empirical value
# --gin_bindings="Config.mesh_voxels=134217728" # (optional) number of voxels used to extract mesh, e.g. 134217728 equals to 512**3 . Smaller values may solve OutoFMemoryError
# --gin_bindings="Config.vertex_color = True" # (optional) saving mesh with vertex color instead of atlas which is much slower but with more details.
# --gin_bindings="Config.vertex_projection = True" # (optional) use projection for vertex color
# or extracting mesh using tsdf method
accelerate launch extract.py \
--gin_configs=configs/360.gin \
--gin_bindings="Config.data_dir = '${DATA_DIR}'" \
--gin_bindings="Config.exp_name = '${EXP_NAME}'" \
--gin_bindings="Config.factor = 4"
# alternatively you can use an example script
bash scripts/extract_360.sh
```
## OutOfMemory
you can decrease the total batch size by
adding e.g. `--gin_bindings="Config.batch_size = 8192" `,
or decrease the test chunk size by adding e.g. `--gin_bindings="Config.render_chunk_size = 8192" `,
or use more GPU by configure `accelerate config` .
## Preparing custom data
More details can be found at https://github.com/google-research/multinerf
```
DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}
```
## TODO
- [x] Add MultiScale training and testing
## Citation
```
@misc{barron2023zipnerf,
title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields},
author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
year={2023},
eprint={2304.06706},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{multinerf2022,
title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
year={2022},
url={https://github.com/google-research/multinerf},
}
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}
@misc{torch-ngp,
Author = {Jiaxiang Tang},
Year = {2022},
Note = {https://github.com/ashawkey/torch-ngp},
Title = {Torch-ngp: a PyTorch implementation of instant-ngp}
}
```
## Acknowledgements
This work is based on my another repo https://github.com/SuLvXiangXin/multinerf-pytorch,
which is basically a pytorch translation from [multinerf](https://github.com/google-research/multinerf)
- Thanks to [multinerf](https://github.com/google-research/multinerf) for amazing multinerf(MipNeRF360,RefNeRF,RawNeRF) implementation
- Thanks to [accelerate](https://github.com/huggingface/accelerate) for distributed training
- Thanks to [torch-ngp](https://github.com/ashawkey/torch-ngp) for super useful hashencoder
- Thanks to [Yurui Chen](https://github.com/519401113) for discussing the details of the paper. |