File size: 8,870 Bytes
b393d11
 
 
 
b57c535
b393d11
c165cd8
 
 
 
 
 
 
b393d11
 
c165cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b393d11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
license: apache-2.0
tags:
- code
pipeline_tag: depth-estimation
---
# ZipNeRF

An unofficial pytorch implementation of 
"Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields" 
[https://arxiv.org/abs/2304.06706](https://arxiv.org/abs/2304.06706).
This work is based on [multinerf](https://github.com/google-research/multinerf), so features in refnerf,rawnerf,mipnerf360 are also available.

## Credit
Initial Code from [SuLvXiangXin](https://github.com/SuLvXiangXin/zipnerf-pytorch)

## Results
New results(5.27): 

360_v2:

https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/2b276e48-2dc4-4508-8441-e90ec963f7d9


360_v2_glo:(fewer floaters, but worse metric)


https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/bddb5610-2a4f-4981-8e17-71326a24d291






mesh results(5.27):

![mesh](https://github.com/SuLvXiangXin/zipnerf-pytorch/assets/83005605/35866fa7-fe6a-44fe-9590-05d594bdb8cd)



Mipnerf360(PSNR):

|           | bicycle | garden | stump | room  | counter | kitchen | bonsai |
|:---------:|:-------:|:------:|:-----:|:-----:|:-------:|:-------:|:------:|
|   Paper   |  25.80  | 28.20  | 27.55 | 32.65 |  29.38  |  32.50  | 34.46  |
| This repo |  25.44  | 27.98  | 26.75 | 32.13 |  29.10  |  32.63  | 34.20  |


Blender(PSNR):

|           | chair | drums | ficus | hotdog | lego  | materials |  mic  | ship  |
|:---------:|:-----:|:-----:|:-----:|:------:|:-----:|:---------:|:-----:|:-----:|
|   Paper   | 34.84 | 25.84 | 33.90 | 37.14  | 34.84 |   31.66   | 35.15 | 31.38 |
| This repo | 35.26 | 25.51 | 32.66 | 36.56  | 35.04 |   29.43   | 34.93 | 31.38 |

For Mipnerf360 dataset, the model is trained with a downsample factor of 4 for outdoor scene and 2 for indoor scene(same as in paper).
Training speed is about 1.5x slower than paper(1.5 hours on 8 A6000).

The hash decay loss seems to have little effect(?), as many floaters can be found in the final results in both experiments (especially in Blender).

## Install

```
# Clone the repo.
git clone https://github.com/SuLvXiangXin/zipnerf-pytorch.git
cd zipnerf-pytorch

# Make a conda environment.
conda create --name zipnerf python=3.9
conda activate zipnerf

# Install requirements.
pip install -r requirements.txt

# Install other extensions
pip install ./gridencoder

# Install nvdiffrast (optional, for textured mesh)
git clone https://github.com/NVlabs/nvdiffrast
pip install ./nvdiffrast

# Install a specific cuda version of torch_scatter 
# see more detail at https://github.com/rusty1s/pytorch_scatter
CUDA=cu117
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html
```

## Dataset
[mipnerf360](http://storage.googleapis.com/gresearch/refraw360/360_v2.zip)

[refnerf](https://storage.googleapis.com/gresearch/refraw360/ref.zip)

[nerf_synthetic](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1)

[nerf_llff_data](https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1)

```
mkdir data
cd data

# e.g. mipnerf360 data
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip 360_v2.zip
```

## Train
```
# Configure your training (DDP? fp16? ...)
# see https://huggingface.co/docs/accelerate/index for details
accelerate config

# Where your data is 
DATA_DIR=data/360_v2/bicycle
EXP_NAME=360_v2/bicycle

# Experiment will be conducted under "exp/${EXP_NAME}" folder
# "--gin_configs=configs/360.gin" can be seen as a default config 
# and you can add specific config useing --gin_bindings="..." 
accelerate launch train.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"

# or you can also run without accelerate (without DDP)
CUDA_VISIBLE_DEVICES=0 python train.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
      --gin_bindings="Config.factor = 4" 

# alternatively you can use an example training script 
bash scripts/train_360.sh

# blender dataset
bash scripts/train_blender.sh

# metric, render image, etc can be viewed through tensorboard
tensorboard --logdir "exp/${EXP_NAME}"

```

### Render
Rendering results can be found in the directory `exp/${EXP_NAME}/render`
```
accelerate launch render.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.render_path = True" \
    --gin_bindings="Config.render_path_frames = 480" \
    --gin_bindings="Config.render_video_fps = 60" \
    --gin_bindings="Config.factor = 4"  

# alternatively you can use an example rendering script 
bash scripts/render_360.sh
```
## Evaluate
Evaluating results can be found in the directory `exp/${EXP_NAME}/test_preds`
```
# using the same exp_name as in training
accelerate launch eval.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"


# alternatively you can use an example evaluating script 
bash scripts/eval_360.sh
```

## Extract mesh
Mesh results can be found in the directory `exp/${EXP_NAME}/mesh`
```
# more configuration can be found in internal/configs.py
accelerate launch extract.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"
#    --gin_bindings="Config.mesh_radius = 1"  # (optional) smaller for more details e.g. 0.2 in bicycle scene
#    --gin_bindings="Config.isosurface_threshold = 20"  # (optional) empirical value
#    --gin_bindings="Config.mesh_voxels=134217728"  # (optional) number of voxels used to extract mesh, e.g. 134217728 equals to 512**3 . Smaller values may solve OutoFMemoryError
#    --gin_bindings="Config.vertex_color = True"  # (optional) saving mesh with vertex color instead of atlas which is much slower but with more details.
#    --gin_bindings="Config.vertex_projection = True"  # (optional) use projection for vertex color

# or extracting mesh using tsdf method
accelerate launch extract.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"

# alternatively you can use an example script 
bash scripts/extract_360.sh
```

## OutOfMemory
you can decrease the total batch size by 
adding e.g.  `--gin_bindings="Config.batch_size = 8192" `, 
or decrease the test chunk size by adding e.g.  `--gin_bindings="Config.render_chunk_size = 8192" `,
or use more GPU by configure `accelerate config` .


## Preparing custom data
More details can be found at https://github.com/google-research/multinerf
```
DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}
```

## TODO
- [x] Add MultiScale training and testing

## Citation
```
@misc{barron2023zipnerf,
      title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields}, 
      author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
      year={2023},
      eprint={2304.06706},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{multinerf2022,
      title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
      author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
      year={2022},
      url={https://github.com/google-research/multinerf},
}

@Misc{accelerate,
  title =        {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
  author =       {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
  howpublished = {\url{https://github.com/huggingface/accelerate}},
  year =         {2022}
}

@misc{torch-ngp,
    Author = {Jiaxiang Tang},
    Year = {2022},
    Note = {https://github.com/ashawkey/torch-ngp},
    Title = {Torch-ngp: a PyTorch implementation of instant-ngp}
}
```

## Acknowledgements
This work is based on my another repo https://github.com/SuLvXiangXin/multinerf-pytorch, 
which is basically a pytorch translation from [multinerf](https://github.com/google-research/multinerf)

- Thanks to [multinerf](https://github.com/google-research/multinerf) for amazing multinerf(MipNeRF360,RefNeRF,RawNeRF) implementation
- Thanks to [accelerate](https://github.com/huggingface/accelerate) for distributed training
- Thanks to [torch-ngp](https://github.com/ashawkey/torch-ngp) for super useful hashencoder
- Thanks to [Yurui Chen](https://github.com/519401113) for discussing the details of the paper.