File size: 1,641 Bytes
8ec1eb7 940ffe2 8ec1eb7 940ffe2 8ec1eb7 940ffe2 ff36691 8ec1eb7 111b933 8ec1eb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: UCLAML/mistral-7b-expert-iteration-iter3
datasets:
- synthetic_data_mistral-7b-instruct-expert-iteration-iter3_score
tags:
- alignment-handbook
- generated_from_trainer
- autoquant
- gptq
model-index:
- name: UCLAML/mistral-7b-expert-iteration-iter3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Mistral-7B-Instruct-EI-Iter3
This model is a GPTQ version of [UCLAML/mistral-7b-expert-iteration-iter3](UCLAML/mistral-7b-expert-iteration-iter3)
Created with [AutoQuant](https://colab.research.google.com/drive/1b6nqC7UZVt8bx4MksX7s656GXPM-eWw4?usp=sharing)
## Model description
I like the GPTQ format, this is 8bit, GROUP_SIZE 32.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6652 | 1.0 | 106 | 0.4722 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1
|