|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lg-ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: luganda-ner-v1 |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lg-ner |
|
type: lg-ner |
|
config: lug |
|
split: train |
|
args: lug |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.29015544041450775 |
|
- name: Recall |
|
type: recall |
|
value: 0.27722772277227725 |
|
- name: F1 |
|
type: f1 |
|
value: 0.2835443037974684 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7297843665768194 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# luganda-ner-v1 |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0530 |
|
- Precision: 0.2902 |
|
- Recall: 0.2772 |
|
- F1: 0.2835 |
|
- Accuracy: 0.7298 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 25 | 1.2878 | 0.0 | 0.0 | 0.0 | 0.7271 | |
|
| No log | 2.0 | 50 | 1.2373 | 0.0 | 0.0 | 0.0 | 0.7271 | |
|
| No log | 3.0 | 75 | 1.2309 | 0.3542 | 0.1683 | 0.2282 | 0.7244 | |
|
| No log | 4.0 | 100 | 1.1505 | 0.2712 | 0.2376 | 0.2533 | 0.7183 | |
|
| No log | 5.0 | 125 | 1.1360 | 0.2579 | 0.2426 | 0.25 | 0.7170 | |
|
| No log | 6.0 | 150 | 1.0932 | 0.3108 | 0.2277 | 0.2629 | 0.7338 | |
|
| No log | 7.0 | 175 | 1.0761 | 0.2989 | 0.2574 | 0.2766 | 0.7298 | |
|
| No log | 8.0 | 200 | 1.0645 | 0.2805 | 0.3069 | 0.2931 | 0.7244 | |
|
| No log | 9.0 | 225 | 1.0577 | 0.3022 | 0.2723 | 0.2865 | 0.7325 | |
|
| No log | 10.0 | 250 | 1.0530 | 0.2902 | 0.2772 | 0.2835 | 0.7298 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|