Conrad747 commited on
Commit
5503608
·
1 Parent(s): 687d941

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -19
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.4158878504672897
28
  - name: Recall
29
  type: recall
30
- value: 0.5028248587570622
31
  - name: F1
32
  type: f1
33
- value: 0.45524296675191817
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.8060836501901141
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.7681
47
- - Precision: 0.4159
48
- - Recall: 0.5028
49
- - F1: 0.4552
50
- - Accuracy: 0.8061
51
 
52
  ## Model description
53
 
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 25 | 0.9702 | 0.2686 | 0.3672 | 0.3103 | 0.7240 |
82
- | No log | 2.0 | 50 | 0.8977 | 0.2702 | 0.3785 | 0.3153 | 0.7468 |
83
- | No log | 3.0 | 75 | 0.8785 | 0.2517 | 0.4124 | 0.3126 | 0.7551 |
84
- | No log | 4.0 | 100 | 0.8608 | 0.2927 | 0.4746 | 0.3621 | 0.7567 |
85
- | No log | 5.0 | 125 | 0.7859 | 0.4053 | 0.4350 | 0.4196 | 0.7909 |
86
- | No log | 6.0 | 150 | 0.7728 | 0.4010 | 0.4350 | 0.4173 | 0.7901 |
87
- | No log | 7.0 | 175 | 0.7647 | 0.4118 | 0.4746 | 0.4409 | 0.7932 |
88
- | No log | 8.0 | 200 | 0.7800 | 0.3929 | 0.4972 | 0.4389 | 0.7985 |
89
- | No log | 9.0 | 225 | 0.7706 | 0.4211 | 0.4972 | 0.4560 | 0.8053 |
90
- | No log | 10.0 | 250 | 0.7681 | 0.4159 | 0.5028 | 0.4552 | 0.8061 |
91
 
92
 
93
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.29015544041450775
28
  - name: Recall
29
  type: recall
30
+ value: 0.27722772277227725
31
  - name: F1
32
  type: f1
33
+ value: 0.2835443037974684
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.7297843665768194
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 1.0530
47
+ - Precision: 0.2902
48
+ - Recall: 0.2772
49
+ - F1: 0.2835
50
+ - Accuracy: 0.7298
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 25 | 1.2878 | 0.0 | 0.0 | 0.0 | 0.7271 |
82
+ | No log | 2.0 | 50 | 1.2373 | 0.0 | 0.0 | 0.0 | 0.7271 |
83
+ | No log | 3.0 | 75 | 1.2309 | 0.3542 | 0.1683 | 0.2282 | 0.7244 |
84
+ | No log | 4.0 | 100 | 1.1505 | 0.2712 | 0.2376 | 0.2533 | 0.7183 |
85
+ | No log | 5.0 | 125 | 1.1360 | 0.2579 | 0.2426 | 0.25 | 0.7170 |
86
+ | No log | 6.0 | 150 | 1.0932 | 0.3108 | 0.2277 | 0.2629 | 0.7338 |
87
+ | No log | 7.0 | 175 | 1.0761 | 0.2989 | 0.2574 | 0.2766 | 0.7298 |
88
+ | No log | 8.0 | 200 | 1.0645 | 0.2805 | 0.3069 | 0.2931 | 0.7244 |
89
+ | No log | 9.0 | 225 | 1.0577 | 0.3022 | 0.2723 | 0.2865 | 0.7325 |
90
+ | No log | 10.0 | 250 | 1.0530 | 0.2902 | 0.2772 | 0.2835 | 0.7298 |
91
 
92
 
93
  ### Framework versions