Text-to-Image
stable-diffusion
File size: 4,091 Bytes
0d86aff
 
038ccef
 
9a23564
99d8e43
0d86aff
02bf629
fab7d4a
02bf629
 
d378f9d
02bf629
fab7d4a
02bf629
 
fab7d4a
02bf629
 
 
 
d378f9d
02bf629
 
fab7d4a
02bf629
fab7d4a
02bf629
fab7d4a
02bf629
fab7d4a
02bf629
fab7d4a
02bf629
 
 
 
fab7d4a
02bf629
fab7d4a
02bf629
 
 
 
fab7d4a
 
 
 
 
 
 
 
 
 
 
 
 
 
d378f9d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
license: other
tags:
- stable-diffusion
- text-to-image
inference: false
---
# Stable Diffusion

Stable Diffusion is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input.
This model card gives an overview of all available model checkpoints. For more in-detail model cards, please have a look at the model repositories listed under [Model Access](#model-access).

** Stable Diffusion V1**

In its first version, 4 model checkpoints are released: **stable-diffusion-v1-1**, **stable-diffusion-v1-2**, **stable-diffusion-v1-3** and **stable-diffusion-v1-4**.
*Higher* versions have been trained for longer and are thus usually better in terms of image generation quality then *lower* versions. More specifically: 

- **stable-diffusion-v1-1**: The checkpoint is randomely initialized and has been trained on 237,000 steps at resolution `256x256` on [laion2B-en](https://huggingface.co/datasets/laion/laion2B-en).
  194,000 steps at resolution `512x512` on [laion-high-resolution](https://huggingface.co/datasets/laion/laion-high-resolution) (170M examples from LAION-5B with resolution `>= 1024x1024`).
- **stable-diffusion-v1-2** (https://huggingface.co/CompVis/stable-diffusion-v1-2): The checkpoint is resumed training from `stable-diffusion-v1-1`.
  515,000 steps at resolution `512x512` on "laion-improved-aesthetics" (a subset of laion2B-en,
filtered to images with an original size `>= 512x512`, estimated aesthetics score `> 5.0`, and an estimated watermark probability `< 0.5`. The watermark estimate is from the LAION-5B metadata, the aesthetics score is estimated using an [improved aesthetics estimator](https://github.com/christophschuhmann/improved-aesthetic-predictor)).
- **stable-diffusion-v1-3** (https://huggingface.co/CompVis/stable-diffusion-v1-3): The checkpoint is resumed training from `stable-diffusion-v1-2`. 195,000 steps at resolution `512x512` on "laion-improved-aesthetics" and 10 % dropping of the text-conditioning to improve [classifier-free guidance sampling](https://arxiv.org/abs/2207.12598)
- **stable-diffusion-v1-4** (https://huggingface.co/CompVis/stable-diffusion-v1-4) The checkpoint is resumed training.

The model can be used both with [🤗's `diffusers` library](https://github.com/huggingface/diffusers) or the original [Stable Diffusion GitHub repository](https://github.com/CompVis/stable-diffusion).

## Model access

Each checkpoint can be accessed as soon as having *"click-requested"* them on the respective model repositories.

**For [🤗's `diffusers`](https://github.com/huggingface/diffusers)**:

- [`stable-diffusion-v1-1`](https://huggingface.co/CompVis/stable-diffusion-v1-1)
- [`stable-diffusion-v1-2`](https://huggingface.co/CompVis/stable-diffusion-v1-2)
- [`stable-diffusion-v1-3`](https://huggingface.co/CompVis/stable-diffusion-v1-3)
- [`stable-diffusion-v1-4`](https://huggingface.co/CompVis/stable-diffusion-v1-4)

**For with the original [Stable Diffusion GitHub repository](https://github.com/CompVis/stable-diffusion)**:

- [`stable-diffusion-v-1-1-original`](https://huggingface.co/CompVis/stable-diffusion-v-1-1-original)
- [`stable-diffusion-v-1-2-original`](https://huggingface.co/CompVis/stable-diffusion-v-1-2-original)
- [`stable-diffusion-v-1-3-original`](https://huggingface.co/CompVis/stable-diffusion-v-1-3-original)
- [`stable-diffusion-v-1-4-original`](https://huggingface.co/CompVis/stable-diffusion-v-1-4-original)

## Citation

```bibtex
    @InProceedings{Rombach_2022_CVPR,
        author    = {Rombach, Robin and Blattmann, Andreas and Lorenz, Dominik and Esser, Patrick and Ommer, Bj\"orn},
        title     = {High-Resolution Image Synthesis With Latent Diffusion Models},
        booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
        month     = {June},
        year      = {2022},
        pages     = {10684-10695}
    }
```

*This model card was written by: Robin Rombach and Patrick Esser and is based on the [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*