File size: 3,365 Bytes
6a4687e 7f21747 6a4687e e01b1d5 6a4687e e01b1d5 6a4687e e01b1d5 6a4687e e01b1d5 6a4687e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: finetuned_robert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_robert
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the topic-keyword inclusion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2694
- F1: 0.9041
- Precision: 0.8354
- Recall: 0.9851
- Accuracy: 0.9067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 0.7067 | 0.28 | 10 | 0.6843 | 0.0 | 0.0 | 0.0 | 0.5533 |
| 0.7087 | 0.56 | 20 | 0.6786 | 0.0 | 0.0 | 0.0 | 0.5533 |
| 0.6887 | 0.83 | 30 | 0.6543 | 0.7241 | 0.8571 | 0.6269 | 0.7867 |
| 0.6773 | 1.11 | 40 | 0.6069 | 0.816 | 0.8793 | 0.7612 | 0.8467 |
| 0.6073 | 1.39 | 50 | 0.4951 | 0.7711 | 0.6465 | 0.9552 | 0.7467 |
| 0.5731 | 1.67 | 60 | 0.3976 | 0.8219 | 0.7595 | 0.8955 | 0.8267 |
| 0.4806 | 1.94 | 70 | 0.3487 | 0.8421 | 0.8485 | 0.8358 | 0.86 |
| 0.4685 | 2.22 | 80 | 0.5218 | 0.7811 | 0.6471 | 0.9851 | 0.7533 |
| 0.4243 | 2.5 | 90 | 0.8471 | 0.7322 | 0.5776 | 1.0 | 0.6733 |
| 0.3692 | 2.78 | 100 | 0.3453 | 0.8514 | 0.7778 | 0.9403 | 0.8533 |
| 0.4633 | 3.06 | 110 | 0.2813 | 0.8611 | 0.8052 | 0.9254 | 0.8667 |
| 0.3334 | 3.33 | 120 | 0.3090 | 0.8514 | 0.7778 | 0.9403 | 0.8533 |
| 0.3167 | 3.61 | 130 | 0.3531 | 0.8497 | 0.7558 | 0.9701 | 0.8467 |
| 0.2615 | 3.89 | 140 | 0.2679 | 0.8873 | 0.84 | 0.9403 | 0.8933 |
| 0.2672 | 4.17 | 150 | 0.2528 | 0.8889 | 0.8312 | 0.9552 | 0.8933 |
| 0.2103 | 4.44 | 160 | 0.2905 | 0.8649 | 0.7901 | 0.9552 | 0.8667 |
| 0.2208 | 4.72 | 170 | 0.2992 | 0.8649 | 0.7901 | 0.9552 | 0.8667 |
| 0.2267 | 5.0 | 180 | 0.2911 | 0.8859 | 0.8049 | 0.9851 | 0.8867 |
| 0.1623 | 5.28 | 190 | 0.2355 | 0.9014 | 0.8533 | 0.9552 | 0.9067 |
| 0.2148 | 5.56 | 200 | 0.2200 | 0.9091 | 0.8553 | 0.9701 | 0.9133 |
| 0.1537 | 5.83 | 210 | 0.2694 | 0.9041 | 0.8354 | 0.9851 | 0.9067 |
### Framework versions
- Transformers 4.40.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|