File size: 4,579 Bytes
4c40d3d
 
 
 
3a14cab
4c40d3d
 
 
 
 
 
 
 
 
 
 
 
3a14cab
4c40d3d
 
 
 
 
 
 
3a14cab
44c4f4c
3a14cab
 
44c4f4c
3a14cab
 
44c4f4c
3a14cab
 
44c4f4c
3a14cab
fef2183
 
 
4c40d3d
 
 
 
 
 
 
 
 
44c4f4c
 
 
 
 
4c40d3d
 
 
00a7371
 
 
fef2183
 
 
 
 
 
00a7371
fef2183
 
 
 
 
00a7371
 
 
fef2183
 
 
 
 
 
00a7371
fef2183
 
 
 
4c40d3d
 
 
fef2183
4c40d3d
 
 
fef2183
4c40d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c4f4c
 
 
 
 
4c40d3d
 
 
 
 
 
 
fef2183
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: bert-base-uncased
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: NER_Pittsburgh_TAA
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: conll2003
      type: conll2003
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - type: precision
      value: 0.9429236395877203
      name: Precision
    - type: recall
      value: 0.9517843159190066
      name: Recall
    - type: f1
      value: 0.9473332591025497
      name: F1
    - type: accuracy
      value: 0.9867030994328562
      name: Accuracy
language:
- en
- uk
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# NER_Pittsburgh_TAA

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0860
- Precision: 0.9429
- Recall: 0.9518
- F1: 0.9473
- Accuracy: 0.9867

## Model description

## Ukr

Модель була створена як практичне завдання з машиного навчання, це за fine-tuning BERT модель для задачі Named Entity Recognition. 
Датасет який був використан це conll2003, стандат для навчання моделей під задачу Named Entity Recognition, або ще визначення складових мови в реченні.
Дізнатися як працює модель маєте змогу або через інтерфейс, який надає huggingface, або ж через код 

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")

model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")

Якщо цікавить чому модель має таку назву, перше це для чого вона для NER, друга складова це назва крутої пісні Pittsburgh третя і остання складова
це гурт який пісню створив це The Amity Affliction

## En

The model was created as a practical machine learning task, it is a fine-tuning BERT model for the Named Entity Recognition task. 
The dataset used is conll2003, a standard for training models for the Named Entity Recognition task, or for identifying the components of speech in a sentence.
You can find out how the model works either through the interface provided by huggingface or through the code 

from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("CineAI/NER_Pittsburgh_TAA")

model = AutoModelForTokenClassification.from_pretrained("CineAI/NER_Pittsburgh_TAA")

If you are wondering why the model has such a name, the first is why it is for NER, the second component is the name of a cool song Pittsburgh, the third and last component
is the band that created the song - The Amity Affliction

## Intended uses & limitations

Everyone can use this model, it is completely free and distributed under the Apache 2.0 licence.

## Training and evaluation data

Training and assessment data are the same - conll2003 

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 439  | 0.0863          | 0.9437    | 0.9444 | 0.9440 | 0.9861   |
| 0.0024        | 2.0   | 878  | 0.0995          | 0.9394    | 0.9442 | 0.9418 | 0.9852   |
| 0.0021        | 3.0   | 1317 | 0.0904          | 0.9355    | 0.9463 | 0.9409 | 0.9856   |
| 0.0012        | 4.0   | 1756 | 0.0835          | 0.9427    | 0.9514 | 0.9471 | 0.9867   |
| 0.0009        | 5.0   | 2195 | 0.0860          | 0.9429    | 0.9518 | 0.9473 | 0.9867   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1