File size: 6,944 Bytes
fa4458a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import List, Optional

import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, HfArgumentParser, TrainingArguments

from trl import SFTTrainer, is_xpu_available


tqdm.pandas()


# Define and parse arguments.
@dataclass
class ScriptArguments:
    """
    The name of the Casual LM model we wish to fine with SFTTrainer
    """

    model_name: Optional[str] = field(default="facebook/opt-350m", metadata={"help": "the model name"})
    dataset_name: Optional[str] = field(
        default="timdettmers/openassistant-guanaco", metadata={"help": "the dataset name"}
    )
    dataset_text_field: Optional[str] = field(default="text", metadata={"help": "the text field of the dataset"})
    log_with: Optional[str] = field(default="none", metadata={"help": "use 'wandb' to log with wandb"})
    learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
    batch_size: Optional[int] = field(default=64, metadata={"help": "the batch size"})
    seq_length: Optional[int] = field(default=512, metadata={"help": "Input sequence length"})
    gradient_accumulation_steps: Optional[int] = field(
        default=16, metadata={"help": "the number of gradient accumulation steps"}
    )
    load_in_8bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 8 bits precision"})
    load_in_4bit: Optional[bool] = field(default=False, metadata={"help": "load the model in 4 bits precision"})
    use_peft: Optional[bool] = field(default=False, metadata={"help": "Wether to use PEFT or not to train adapters"})
    trust_remote_code: Optional[bool] = field(default=False, metadata={"help": "Enable `trust_remote_code`"})
    output_dir: Optional[str] = field(default="output", metadata={"help": "the output directory"})
    peft_lora_r: Optional[int] = field(default=64, metadata={"help": "the r parameter of the LoRA adapters"})
    peft_lora_alpha: Optional[int] = field(default=16, metadata={"help": "the alpha parameter of the LoRA adapters"})
    logging_steps: Optional[int] = field(default=1, metadata={"help": "the number of logging steps"})
    use_auth_token: Optional[bool] = field(default=True, metadata={"help": "Use HF auth token to access the model"})
    num_train_epochs: Optional[int] = field(default=3, metadata={"help": "the number of training epochs"})
    max_steps: Optional[int] = field(default=-1, metadata={"help": "the number of training steps"})
    save_steps: Optional[int] = field(
        default=100, metadata={"help": "Number of updates steps before two checkpoint saves"}
    )
    save_total_limit: Optional[int] = field(default=10, metadata={"help": "Limits total number of checkpoints."})
    push_to_hub: Optional[bool] = field(default=False, metadata={"help": "Push the model to HF Hub"})
    gradient_checkpointing: Optional[bool] = field(
        default=False, metadata={"help": "Whether to use gradient checkpointing or no"}
    )
    gradient_checkpointing_kwargs: Optional[dict] = field(
        default=None,
        metadata={
            "help": "key word arguments to be passed along `torch.utils.checkpoint.checkpoint` method - e.g. `use_reentrant=False`"
        },
    )
    hub_model_id: Optional[str] = field(default=None, metadata={"help": "The name of the model on HF Hub"})
    mixed_precision: Optional[str] = field(default="bf16", metadata={"help": "Mixed precision training"})
    target_modules: Optional[List[str]] = field(default=None, metadata={"help": "Target modules for LoRA adapters"})


parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]

# Step 1: Load the model
if script_args.load_in_8bit and script_args.load_in_4bit:
    raise ValueError("You can't load the model in 8 bits and 4 bits at the same time")
elif script_args.load_in_8bit or script_args.load_in_4bit:
    quantization_config = BitsAndBytesConfig(
        load_in_8bit=script_args.load_in_8bit, load_in_4bit=script_args.load_in_4bit
    )
    # Copy the model to each device
    device_map = (
        {"": f"xpu:{Accelerator().local_process_index}"}
        if is_xpu_available()
        else {"": Accelerator().local_process_index}
    )
    torch_dtype = torch.bfloat16
else:
    device_map = None
    quantization_config = None
    torch_dtype = None

model = AutoModelForCausalLM.from_pretrained(
    script_args.model_name,
    quantization_config=quantization_config,
    device_map=device_map,
    trust_remote_code=script_args.trust_remote_code,
    torch_dtype=torch_dtype,
    use_auth_token=script_args.use_auth_token,
)

# Step 2: Load the dataset
dataset = load_dataset(script_args.dataset_name, split="train")

# Step 3: Define the training arguments
training_args = TrainingArguments(
    output_dir=script_args.output_dir,
    per_device_train_batch_size=script_args.batch_size,
    gradient_accumulation_steps=script_args.gradient_accumulation_steps,
    learning_rate=script_args.learning_rate,
    logging_steps=script_args.logging_steps,
    num_train_epochs=script_args.num_train_epochs,
    max_steps=script_args.max_steps,
    report_to=script_args.log_with,
    save_steps=script_args.save_steps,
    save_total_limit=script_args.save_total_limit,
    push_to_hub=script_args.push_to_hub,
    hub_model_id=script_args.hub_model_id,
    gradient_checkpointing=script_args.gradient_checkpointing,
    # TODO: uncomment that on the next release
    # gradient_checkpointing_kwargs=script_args.gradient_checkpointing_kwargs,
)

# Step 4: Define the LoraConfig
if script_args.use_peft:
    peft_config = LoraConfig(
        r=script_args.peft_lora_r,
        lora_alpha=script_args.peft_lora_alpha,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules=script_args.target_modules,
    )
else:
    peft_config = None

# Step 5: Define the Trainer
trainer = SFTTrainer(
    model=model,
    args=training_args,
    max_seq_length=script_args.seq_length,
    train_dataset=dataset,
    dataset_text_field=script_args.dataset_text_field,
    peft_config=peft_config,
)

trainer.train()

# Step 6: Save the model
trainer.save_model(script_args.output_dir)