File size: 4,679 Bytes
fa4458a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import argparse
import csv

import evaluate
import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer

from trl.import_utils import is_xpu_available


toxicity = evaluate.load("ybelkada/toxicity", "DaNLP/da-electra-hatespeech-detection", module_type="measurement")
ds = load_dataset("OxAISH-AL-LLM/wiki_toxic", split="test")

parser = argparse.ArgumentParser(description="Evaluate de-toxified models")
parser.add_argument("--model_type", default="all", type=str, help="Relative path to the source model folder")
parser.add_argument("--output_file", default="toxicity.csv", type=str, help="Relative path to the source model folder")
parser.add_argument("--batch_size", default=64, type=int, help="Batch size")
parser.add_argument("--num_samples", default=400, type=int, help="Number of samples")
parser.add_argument("--context_length", default=2000, type=int, help="Number of samples")
parser.add_argument("--max_new_tokens", default=30, type=int, help="Max new tokens for generation")
args = parser.parse_args()


if args.model_type == "all":
    MODELS_TO_TEST = [
        "ybelkada/gpt-neo-125m-detox",
        "EleutherAI/gpt-neo-125M",
        "EleutherAI/gpt-neo-2.7B",
        "ybelkada/gpt-neo-2.7B-detox",
        "ybelkada/gpt-j-6b-sharded-bf16",
        "ybelkada/gpt-j-6b-detoxs",
    ]
elif args.model_type == "gpt-neo":
    MODELS_TO_TEST = [
        "ybelkada/gpt-neo-125m-detox",
        "EleutherAI/gpt-neo-125M",
        "EleutherAI/gpt-neo-2.7B",
        "ybelkada/gpt-neo-2.7B-detox",
    ]
elif args.model_type == "gpt-j":
    MODELS_TO_TEST = [
        "ybelkada/gpt-j-6b-sharded-bf16",
        "ybelkada/gpt-j-6b-detox",
    ]
else:
    MODELS_TO_TEST = [args.model_type]
NUM_SAMPLES = args.num_samples
BATCH_SIZE = args.batch_size
output_file = args.output_file
max_new_tokens = args.max_new_tokens
context_length = args.context_length
if is_xpu_available():
    device = torch.xpu.current_device()
else:
    device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"

# consider only toxic prompts
ds = ds.filter(lambda x: x["label"] == 1)

toxicities = {}

# open a csv file
file = open(f"{output_file}", "w", newline="")
writer = csv.writer(file)
# add first rows
writer.writerow(["model_id", "mean_toxicity", "std_toxicity"])


for model_id in tqdm(MODELS_TO_TEST):
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": device}, torch_dtype=torch.bfloat16)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.pad_token = tokenizer.eos_token
    tokenizer.padding_side = "left"
    input_texts = []

    for i, example in enumerate(ds):
        # set seed
        torch.manual_seed(42)

        input_text = example["comment_text"]
        input_texts.append(input_text[:2000])

        if i > NUM_SAMPLES:
            break

        if (i + 1) % BATCH_SIZE == 0:
            inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
            inputs.input_ids = inputs.input_ids[:context_length]
            inputs.attention_mask = inputs.attention_mask[:context_length]
            outputs = model.generate(**inputs, do_sample=True, max_new_tokens=max_new_tokens, use_cache=True)
            generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
            generated_texts = [
                generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
            ]
            toxicity_score = toxicity.compute(predictions=generated_texts)
            input_texts = []

            if model_id not in toxicities:
                toxicities[model_id] = []
            toxicities[model_id].extend(toxicity_score["toxicity"])

    # last batch
    inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
    outputs = model.generate(**inputs, do_sample=True, max_new_tokens=30)
    generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    generated_texts = [generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)]
    toxicity_score = toxicity.compute(predictions=generated_texts)
    toxicities[model_id].extend(toxicity_score["toxicity"])

    # compute mean & std using np
    mean = np.mean(toxicities[model_id])
    std = np.std(toxicities[model_id])

    # save to file
    writer.writerow([model_id, mean, std])

    # print
    print(f"Model: {model_id} - Mean: {mean} - Std: {std}")

    model = None
    if is_xpu_available():
        torch.xpu.empty_cache()
    else:
        torch.cuda.empty_cache()

# close file
file.close()