File size: 2,912 Bytes
656f9c2 a6f0d7f 656f9c2 a6f0d7f 656f9c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: electra-large-discriminator-nli-efl-hateval
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# electra-large-discriminator-nli-efl-hateval
This model is a fine-tuned version of [ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli](https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli) on the None dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.798
- F1: 0.7968
- Loss: 0.4166
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|
| 0.4175 | 1.0 | 210 | 0.7317 | 0.7305 | 0.4020 |
| 0.3061 | 2.0 | 420 | 0.768 | 0.7675 | 0.3520 |
| 0.2588 | 3.0 | 630 | 0.79 | 0.7888 | 0.3253 |
| 0.234 | 4.0 | 840 | 0.788 | 0.7877 | 0.3373 |
| 0.2116 | 5.0 | 1050 | 0.804 | 0.8033 | 0.3247 |
| 0.1974 | 6.0 | 1260 | 0.793 | 0.7928 | 0.3400 |
| 0.1807 | 7.0 | 1470 | 0.7973 | 0.7969 | 0.3511 |
| 0.1715 | 8.0 | 1680 | 0.7993 | 0.7989 | 0.3496 |
| 0.1577 | 9.0 | 1890 | 0.8043 | 0.8032 | 0.3507 |
| 0.1469 | 10.0 | 2100 | 0.798 | 0.7970 | 0.3604 |
| 0.1394 | 11.0 | 2310 | 0.7967 | 0.7957 | 0.3734 |
| 0.1322 | 12.0 | 2520 | 0.7913 | 0.7906 | 0.3929 |
| 0.1231 | 13.0 | 2730 | 0.795 | 0.7941 | 0.3954 |
| 0.1189 | 14.0 | 2940 | 0.7977 | 0.7963 | 0.3994 |
| 0.1143 | 15.0 | 3150 | 0.7993 | 0.7980 | 0.3995 |
| 0.1083 | 16.0 | 3360 | 0.7927 | 0.7918 | 0.4125 |
| 0.1079 | 17.0 | 3570 | 0.7993 | 0.7979 | 0.4036 |
| 0.1055 | 18.0 | 3780 | 0.7967 | 0.7956 | 0.4121 |
| 0.1006 | 19.0 | 3990 | 0.7973 | 0.7961 | 0.4152 |
| 0.101 | 20.0 | 4200 | 0.798 | 0.7968 | 0.4166 |
### Framework versions
- Transformers 4.17.0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6
|