File size: 26,679 Bytes
2ca2f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import generators
import monai
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import os
import sys
from pathlib import Path
import pickle

ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/utils'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/loss_function'))
from utils import (
    preview_image, preview_3D_vector_field, preview_3D_deformation,
    jacobian_determinant, plot_progress, make_if_dont_exist, save_seg_checkpoint, save_reg_checkpoint, load_latest_checkpoint,
    load_best_checkpoint, load_valid_checkpoint, plot_architecture
)
from losses import (
    warp_func, warp_nearest_func, lncc_loss_func, dice_loss_func, reg_losses, dice_loss_func2
)


def swap_training(network_to_train, network_to_not_train):
    """
        Switch out of training one network and into training another
    """

    for param in network_to_not_train.parameters():
        param.requires_grad = False

    for param in network_to_train.parameters():
        param.requires_grad = True

    network_to_not_train.eval()
    network_to_train.train()

def train_network(dataloader_train_reg,
                  dataloader_valid_reg,
                  dataloader_train_seg,
                  dataloader_valid_seg,
                  device,
                  seg_net,
                  reg_net,
                  num_segmentation_classes,
                  lr_reg,
                  lr_seg,
                  lam_a,
                  lam_sp,
                  lam_re,
                  max_epoch,
                  val_step,
                  result_seg_path,
                  result_reg_path,
                  logger,
                  img_shape,
                  plot_network=False,
                  continue_training=False
                  ):
    # Training cell
    
    make_if_dont_exist(os.path.join(result_seg_path, 'training_plot'))
    make_if_dont_exist(os.path.join(result_reg_path, 'training_plot'))
    make_if_dont_exist(os.path.join(result_seg_path, 'model'))
    make_if_dont_exist(os.path.join(result_reg_path, 'model'))
    make_if_dont_exist(os.path.join(result_seg_path, 'checkpoints'))
    make_if_dont_exist(os.path.join(result_reg_path, 'checkpoints'))
    
    ROOT_DIR = str(Path(result_reg_path).parent.absolute())
    seg_availabilities = ['00', '01', '10', '11']
    batch_generator_train_reg = generators.create_batch_generator(
        dataloader_train_reg)
    batch_generator_valid_reg = generators.create_batch_generator(
        dataloader_valid_reg)
    seg_train_sampling_weights = [
        0] + [len(dataloader_train_reg[s]) for s in seg_availabilities[1:]]
    print('----------'*10)
    print(f"""When training seg_net alone, segmentation availabilities {seg_availabilities}
    will be sampled with respective weights {seg_train_sampling_weights}""")
    batch_generator_train_seg = generators.create_batch_generator(
        dataloader_train_reg, seg_train_sampling_weights)
    seg_net = seg_net.to(device)
    reg_net = reg_net.to(device)

    learning_rate_reg = lr_reg
    optimizer_reg = torch.optim.Adam(reg_net.parameters(), learning_rate_reg)
    scheduler_reg = torch.optim.lr_scheduler.StepLR(optimizer_reg, step_size=70, gamma=0.2, verbose=True)
    learning_rate_seg = lr_seg
    optimizer_seg = torch.optim.Adam(seg_net.parameters(), learning_rate_seg)
    scheduler_seg = torch.optim.lr_scheduler.StepLR(optimizer_seg, step_size=50, gamma=0.2, verbose=True)
    last_epoch = 0
    
    training_losses_reg = []
    validation_losses_reg = []
    training_losses_seg = []
    validation_losses_seg = []
    regularization_loss_reg = []
    anatomy_loss_reg = []
    similarity_loss_reg = []
    supervised_loss_seg = []
    anatomy_loss_seg = []
    best_seg_validation_loss = float('inf')
    best_reg_validation_loss = float('inf')
    
    last_epoch_valid = 0
    if continue_training:
        if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
            if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'best_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'best_checkpoint.pth')): 
                best_seg_validation_loss = load_best_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
                best_reg_validation_loss = load_best_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
            
            all_validation_losses_reg = load_valid_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
            all_validation_losses_seg = load_valid_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
            validation_losses_reg = all_validation_losses_reg['total_loss']
            validation_losses_seg = all_validation_losses_seg['total_loss']
            last_epoch_valid = np.minimum(len(validation_losses_reg), len(validation_losses_seg))
            validation_losses_reg = validation_losses_reg[:last_epoch_valid]
            validation_losses_seg = validation_losses_seg[:last_epoch_valid]
            np_validation_losses_reg = np.array(validation_losses_reg)
            np_validation_losses_seg = np.array(validation_losses_seg)
            if best_reg_validation_loss not in np_validation_losses_reg[:, 1]:
                best_reg_validation_loss = np.min(np_validation_losses_reg[:, 1])
                if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
                    assert os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
                    os.remove(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
                    os.rename(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
            if best_seg_validation_loss not in np_validation_losses_seg[:, 1]:
                best_seg_validation_loss = np.min(np_validation_losses_seg[:, 1])
                if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
                    assert os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
                    os.remove(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
                    os.rename(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
        else:
            if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')):
                os.remove(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth'))  
            elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
                os.remove(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth'))
        
        if last_epoch_valid != 0 and os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
            reg_net, optimizer_reg, all_training_losses_reg = load_latest_checkpoint(os.path.join(result_reg_path, 'checkpoints'), reg_net, optimizer_reg, device)
            seg_net, optimizer_seg, all_training_losses_seg = load_latest_checkpoint(os.path.join(result_seg_path, 'checkpoints'), seg_net, optimizer_seg, device)
            regularization_loss_reg = all_training_losses_reg['regular_loss']
            anatomy_loss_reg = all_training_losses_reg['ana_loss']
            similarity_loss_reg = all_training_losses_reg['sim_loss']
            supervised_loss_seg = all_training_losses_seg['super_loss']
            anatomy_loss_seg = all_training_losses_seg['ana_loss']
            training_losses_reg = all_training_losses_reg['total_loss']
            training_losses_seg = all_training_losses_seg['total_loss']
            last_epoch_train = np.min(np.array([last_epoch_valid * val_step, len(training_losses_reg), len(training_losses_seg)]))
            regularization_loss_reg = regularization_loss_reg[:last_epoch_train]
            anatomy_loss_reg = anatomy_loss_reg[:last_epoch_train]
            similarity_loss_reg = similarity_loss_reg[:last_epoch_train]
            supervised_loss_seg = supervised_loss_seg[:last_epoch_train]
            anatomy_loss_seg = anatomy_loss_seg[:last_epoch_train]
            training_losses_reg = training_losses_reg[:last_epoch_train]
            training_losses_seg = training_losses_seg[:last_epoch_train]

            last_epoch = last_epoch_train
        else:
            if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')):
                os.remove(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth'))  
            elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
                os.remove(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth'))
    
    if len(dataloader_valid_reg) == 0:
        validation_losses_reg = []
    
    if len(dataloader_valid_seg) == 0:
        validation_losses_seg = []
    
    lambda_a = lam_a  # anatomy loss weight
    lambda_sp = lam_sp  # supervised segmentation loss weight

    # regularization loss weight
    # monai has provided normalized bending energy loss
    # no need to modify the weight according to the image size
    lambda_r = lam_re

    max_epochs = max_epoch
    reg_phase_training_batches_per_epoch = 10
    # Fewer batches needed, because seg_net converges more quickly
    seg_phase_training_batches_per_epoch = 5
    reg_phase_num_validation_batches_to_use = 10
    val_interval = val_step
    if plot_network:
        plot_architecture(seg_net, img_shape, seg_phase_training_batches_per_epoch, 'SegNet', result_seg_path)
        plot_architecture(reg_net, img_shape, reg_phase_training_batches_per_epoch, 'RegNet', result_reg_path)
    
    logger.info('Start Training')

    for epoch_number in range(last_epoch, max_epochs):

        logger.info(f"Epoch {epoch_number+1}/{max_epochs}:")
            # ------------------------------------------------
            #         reg_net training, with seg_net frozen
            # ------------------------------------------------

            # Keep computational graph in memory for reg_net, but not for seg_net, and do reg_net.train()
        swap_training(reg_net, seg_net)

        losses = []
        regularization_loss = []
        similarity_loss = []
        anatomy_loss = []
        for batch in batch_generator_train_reg(reg_phase_training_batches_per_epoch):
            optimizer_reg.zero_grad()
            loss_sim, loss_reg, loss_ana, df = reg_losses(
                batch, device, reg_net, seg_net, num_segmentation_classes)
            loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
            loss.backward()
            optimizer_reg.step()
            losses.append(loss.item())
            regularization_loss.append(loss_reg.item())
            similarity_loss.append(loss_sim.item())
            anatomy_loss.append(loss_ana.item())
        
        #preview_3D_vector_field(df.cpu().detach()[0], ep=epoch_number, path=result_reg_path)

        training_loss_reg = np.mean(losses)
        regularization_loss_reg.append(
            [epoch_number+1, np.mean(regularization_loss)])
        similarity_loss_reg.append([epoch_number+1, np.mean(similarity_loss)])
        anatomy_loss_reg.append([epoch_number+1, np.mean(anatomy_loss)])
        logger.info(f"\treg training loss: {training_loss_reg}")
        training_losses_reg.append([epoch_number+1, training_loss_reg])
        logger.info("\tsave latest reg_net checkpoint")
        save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='latest')
        # validation process
        if len(dataloader_valid_reg) == 0:
            logger.info("\tno enough dataset for validation")
            save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
            save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
            if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
                if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
                    os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
                os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
            torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
        else:
            if epoch_number % val_interval == 0:
                reg_net.eval()
                losses = []
                with torch.no_grad():
                    for batch in batch_generator_valid_reg(reg_phase_num_validation_batches_to_use):
                        loss_sim, loss_reg, loss_ana, dv = reg_losses(
                            batch, device, reg_net, seg_net, num_segmentation_classes)
                        loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
                        losses.append(loss.item())
                
                validation_loss_reg = np.mean(losses)
                logger.info(f"\treg validation loss: {validation_loss_reg}")
                validation_losses_reg.append([epoch_number+1, validation_loss_reg])

                if validation_loss_reg < best_reg_validation_loss:
                    best_reg_validation_loss = validation_loss_reg
                    logger.info("\tsave best reg_net checkpoint and model")
                    save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, best_reg_validation_loss, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
                    if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
                        if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
                            os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
                        os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
                    torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
                save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, validation_loss_reg, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
        
        plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), training_losses_reg, validation_losses_reg, 'reg_net_training_loss')   
        plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), regularization_loss_reg, [], 'regularization_reg_net_loss')
        plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), anatomy_loss_reg, [], 'anatomy_reg_net_loss')
        plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), similarity_loss_reg, [], 'similarity_reg_net_loss')
        # scheduler_reg.step()
        # Free up memory
        del loss, loss_sim, loss_reg, loss_ana
        torch.cuda.empty_cache()

        # ------------------------------------------------
        #         seg_net training, with reg_net frozen
        # ------------------------------------------------

        # Keep computational graph in memory for seg_net, but not for reg_net, and do seg_net.train()
        logger.info('\t'+'----'*10)
        swap_training(seg_net, reg_net)
        losses = []
        supervised_loss = []
        anatomy_loss = []
        dice_loss = dice_loss_func()
        warp = warp_func()
        warp_nearest = warp_nearest_func()
        dice_loss2 = dice_loss_func2()
        for batch in batch_generator_train_seg(seg_phase_training_batches_per_epoch):
            optimizer_seg.zero_grad()

            img12 = batch['img12'].to(device)

            displacement_fields = reg_net(img12)
            seg1_predicted = seg_net(img12[:, [0], :, :, :]).softmax(dim=1)
            seg2_predicted = seg_net(img12[:, [1], :, :, :]).softmax(dim=1)

            # Below we compute the following:
            # loss_supervised: supervised segmentation loss; compares ground truth seg with predicted seg
            # loss_anatomy: anatomy loss; compares warped seg of moving image to seg of target image
            # loss_metric: a single supervised seg loss, as a metric to track the progress of training

            if 'seg1' in batch.keys() and 'seg2' in batch.keys():
                seg1 = monai.networks.one_hot(
                    batch['seg1'].to(device), num_segmentation_classes)
                seg2 = monai.networks.one_hot(
                    batch['seg2'].to(device), num_segmentation_classes)
                loss_metric = dice_loss(seg2_predicted, seg2)
                loss_supervised = loss_metric + dice_loss(seg1_predicted, seg1)
                # The above supervised loss looks a bit different from the one in the paper
                # in that it includes predictions for both images in the current image pair;
                # we might as well do this, since we have gone to the trouble of loading
                # both segmentations into memory.

            elif 'seg1' in batch.keys():  # seg1 available, but no seg2
                seg1 = monai.networks.one_hot(
                    batch['seg1'].to(device), num_segmentation_classes)
                loss_metric = dice_loss(seg1_predicted, seg1)
                loss_supervised = loss_metric
                seg2 = seg2_predicted  # Use this in anatomy loss

            else:  # seg2 available, but no seg1
                assert('seg2' in batch.keys())
                seg2 = monai.networks.one_hot(
                    batch['seg2'].to(device), num_segmentation_classes)
                loss_metric = dice_loss(seg2_predicted, seg2)
                loss_supervised = loss_metric
                seg1 = seg1_predicted  # Use this in anatomy loss

            # seg1 and seg2 should now be in the form of one-hot class probabilities

            loss_anatomy = dice_loss(warp_nearest(seg2, displacement_fields), seg1)\
                if 'seg1' in batch.keys() or 'seg2' in batch.keys()\
                else 0.  # It wouldn't really be 0, but it would not contribute to training seg_net

            # (If you want to refactor this code for *joint* training of reg_net and seg_net,
            #  then use the definition of anatomy loss given in the function anatomy_loss above,
            #  where differentiable warping is used and reg net can be trained with it.)

            loss = lambda_a * loss_anatomy + lambda_sp * loss_supervised
            loss.backward()
            optimizer_seg.step()

            losses.append(loss_metric.item())
            supervised_loss.append(loss_supervised.item())
            anatomy_loss.append(loss_anatomy.item())

        training_loss_seg = np.mean(losses)
        supervised_loss_seg.append([epoch_number+1, np.mean(supervised_loss)])
        anatomy_loss_seg.append([epoch_number+1, np.mean(anatomy_loss)])
        logger.info(f"\tseg training loss: {training_loss_seg}")
        training_losses_seg.append([epoch_number+1, training_loss_seg])
        logger.info("\tsave latest seg_net checkpoint")
        save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='latest')
        
        if len(dataloader_valid_seg) == 0:
            logger.info("\tno enough dataset for validation")
            save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
            save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
            if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
                if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
                    os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
                os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
            torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
        else:
            if epoch_number % val_interval == 0:
                # The following validation loop would not do anything in the case
                # where there is just one segmentation available,
                # because data_seg_available_valid would be empty.
                seg_net.eval()
                losses = []
                with torch.no_grad():
                    for batch in dataloader_valid_seg:
                        imgs = batch['img'].to(device)
                        true_segs = batch['seg'].to(device)
                        predicted_segs = seg_net(imgs)
                        loss = dice_loss2(predicted_segs, true_segs)
                        losses.append(loss.item())

                validation_loss_seg = np.mean(losses)
                logger.info(f"\tseg validation loss: {validation_loss_seg}")
                validation_losses_seg.append([epoch_number+1, validation_loss_seg])

                if validation_loss_seg < best_seg_validation_loss:
                    best_seg_validation_loss = validation_loss_seg
                    logger.info("\tsave best seg_net checkpoint and model")
                    save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, best_seg_validation_loss, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
                    if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
                        if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
                            os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
                        os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
                    torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
                save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, validation_loss_seg, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
        
        plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), training_losses_seg, validation_losses_seg, 'seg_net_training_loss')
        plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), anatomy_loss_seg, [], 'anatomy_seg_net_loss')
        plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), supervised_loss_seg, [], 'supervised_seg_net_loss')   
        logger.info(f"\tseg lr: {optimizer_seg.param_groups[0]['lr']}")
        logger.info(f"\treg lr: {optimizer_reg.param_groups[0]['lr']}")
        # scheduler_seg.step()
        # Free up memory
        del (loss, seg1, seg2, displacement_fields, img12, loss_supervised, loss_anatomy, loss_metric,\
            seg1_predicted, seg2_predicted)
        torch.cuda.empty_cache()

    if len(validation_losses_reg) == 0:
        logger.info('Only small number of pairs are used for training, no need to do validation. Replace best validation loss with training loss !!!')
        logger.info(f'Best reg_net validation loss: {training_loss_reg}')
    else:
        logger.info(f"Best reg_net validation loss: {best_reg_validation_loss}")
    
    if len(validation_losses_seg) == 0:
        logger.info('Only one label is used for training, no need to do validation. Replace best validation loss with training loss !!!')
        logger.info(f'Best seg_net validation loss: {training_loss_seg}')
    else:
        logger.info(f"Best seg_net validation loss: {best_seg_validation_loss}")
    
    # save reg training losses
    reg_training_pkl = [{'training_losses': training_losses_reg},
                        {'anatomy_loss': anatomy_loss_reg},
                        {'similarity_loss': similarity_loss_reg},
                        {'regularization_loss': regularization_loss_reg}
                        ]
    if len(validation_losses_reg) != 0:
        reg_training_pkl.append({'validation_losses': validation_losses_reg})
        reg_training_pkl.append({'best_reg_validation_loss': best_reg_validation_loss})
    else:
        reg_training_pkl.append({'best_reg_validation_loss': training_loss_reg})
    
    # save seg training losses
    seg_training_pkl = [{'training_losses': training_losses_seg},
                        {'anatomy_loss': anatomy_loss_seg},
                        {'supervised_loss': supervised_loss_seg}
                        ]
    if len(validation_losses_seg) != 0:
        seg_training_pkl.append({'validation_losses': validation_losses_seg})
        seg_training_pkl.append({'best_seg_validation_loss': best_seg_validation_loss})
    else:
        seg_training_pkl.append({'best_seg_validation_loss': training_loss_seg})
    
    with open(os.path.join(result_reg_path, 'training_plot', 'reg_training_losses.pkl'), 'wb') as f:
        pickle.dump(reg_training_pkl, f)
    
    with open(os.path.join(result_seg_path, 'training_plot', 'seg_training_losses.pkl'), 'wb') as ff:
        pickle.dump(seg_training_pkl, ff)