File size: 26,679 Bytes
2ca2f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import generators
import monai
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import os
import sys
from pathlib import Path
import pickle
ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/utils'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/loss_function'))
from utils import (
preview_image, preview_3D_vector_field, preview_3D_deformation,
jacobian_determinant, plot_progress, make_if_dont_exist, save_seg_checkpoint, save_reg_checkpoint, load_latest_checkpoint,
load_best_checkpoint, load_valid_checkpoint, plot_architecture
)
from losses import (
warp_func, warp_nearest_func, lncc_loss_func, dice_loss_func, reg_losses, dice_loss_func2
)
def swap_training(network_to_train, network_to_not_train):
"""
Switch out of training one network and into training another
"""
for param in network_to_not_train.parameters():
param.requires_grad = False
for param in network_to_train.parameters():
param.requires_grad = True
network_to_not_train.eval()
network_to_train.train()
def train_network(dataloader_train_reg,
dataloader_valid_reg,
dataloader_train_seg,
dataloader_valid_seg,
device,
seg_net,
reg_net,
num_segmentation_classes,
lr_reg,
lr_seg,
lam_a,
lam_sp,
lam_re,
max_epoch,
val_step,
result_seg_path,
result_reg_path,
logger,
img_shape,
plot_network=False,
continue_training=False
):
# Training cell
make_if_dont_exist(os.path.join(result_seg_path, 'training_plot'))
make_if_dont_exist(os.path.join(result_reg_path, 'training_plot'))
make_if_dont_exist(os.path.join(result_seg_path, 'model'))
make_if_dont_exist(os.path.join(result_reg_path, 'model'))
make_if_dont_exist(os.path.join(result_seg_path, 'checkpoints'))
make_if_dont_exist(os.path.join(result_reg_path, 'checkpoints'))
ROOT_DIR = str(Path(result_reg_path).parent.absolute())
seg_availabilities = ['00', '01', '10', '11']
batch_generator_train_reg = generators.create_batch_generator(
dataloader_train_reg)
batch_generator_valid_reg = generators.create_batch_generator(
dataloader_valid_reg)
seg_train_sampling_weights = [
0] + [len(dataloader_train_reg[s]) for s in seg_availabilities[1:]]
print('----------'*10)
print(f"""When training seg_net alone, segmentation availabilities {seg_availabilities}
will be sampled with respective weights {seg_train_sampling_weights}""")
batch_generator_train_seg = generators.create_batch_generator(
dataloader_train_reg, seg_train_sampling_weights)
seg_net = seg_net.to(device)
reg_net = reg_net.to(device)
learning_rate_reg = lr_reg
optimizer_reg = torch.optim.Adam(reg_net.parameters(), learning_rate_reg)
scheduler_reg = torch.optim.lr_scheduler.StepLR(optimizer_reg, step_size=70, gamma=0.2, verbose=True)
learning_rate_seg = lr_seg
optimizer_seg = torch.optim.Adam(seg_net.parameters(), learning_rate_seg)
scheduler_seg = torch.optim.lr_scheduler.StepLR(optimizer_seg, step_size=50, gamma=0.2, verbose=True)
last_epoch = 0
training_losses_reg = []
validation_losses_reg = []
training_losses_seg = []
validation_losses_seg = []
regularization_loss_reg = []
anatomy_loss_reg = []
similarity_loss_reg = []
supervised_loss_seg = []
anatomy_loss_seg = []
best_seg_validation_loss = float('inf')
best_reg_validation_loss = float('inf')
last_epoch_valid = 0
if continue_training:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'best_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'best_checkpoint.pth')):
best_seg_validation_loss = load_best_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
best_reg_validation_loss = load_best_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
all_validation_losses_reg = load_valid_checkpoint(os.path.join(result_reg_path, 'checkpoints'), device)
all_validation_losses_seg = load_valid_checkpoint(os.path.join(result_seg_path, 'checkpoints'), device)
validation_losses_reg = all_validation_losses_reg['total_loss']
validation_losses_seg = all_validation_losses_seg['total_loss']
last_epoch_valid = np.minimum(len(validation_losses_reg), len(validation_losses_seg))
validation_losses_reg = validation_losses_reg[:last_epoch_valid]
validation_losses_seg = validation_losses_seg[:last_epoch_valid]
np_validation_losses_reg = np.array(validation_losses_reg)
np_validation_losses_seg = np.array(validation_losses_seg)
if best_reg_validation_loss not in np_validation_losses_reg[:, 1]:
best_reg_validation_loss = np.min(np_validation_losses_reg[:, 1])
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
assert os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
if best_seg_validation_loss not in np_validation_losses_seg[:, 1]:
best_seg_validation_loss = np.min(np_validation_losses_seg[:, 1])
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
assert os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
else:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth')):
os.remove(os.path.join(result_seg_path, 'checkpoints', 'valid_checkpoint.pth'))
elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth')):
os.remove(os.path.join(result_reg_path, 'checkpoints', 'valid_checkpoint.pth'))
if last_epoch_valid != 0 and os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')) and os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
reg_net, optimizer_reg, all_training_losses_reg = load_latest_checkpoint(os.path.join(result_reg_path, 'checkpoints'), reg_net, optimizer_reg, device)
seg_net, optimizer_seg, all_training_losses_seg = load_latest_checkpoint(os.path.join(result_seg_path, 'checkpoints'), seg_net, optimizer_seg, device)
regularization_loss_reg = all_training_losses_reg['regular_loss']
anatomy_loss_reg = all_training_losses_reg['ana_loss']
similarity_loss_reg = all_training_losses_reg['sim_loss']
supervised_loss_seg = all_training_losses_seg['super_loss']
anatomy_loss_seg = all_training_losses_seg['ana_loss']
training_losses_reg = all_training_losses_reg['total_loss']
training_losses_seg = all_training_losses_seg['total_loss']
last_epoch_train = np.min(np.array([last_epoch_valid * val_step, len(training_losses_reg), len(training_losses_seg)]))
regularization_loss_reg = regularization_loss_reg[:last_epoch_train]
anatomy_loss_reg = anatomy_loss_reg[:last_epoch_train]
similarity_loss_reg = similarity_loss_reg[:last_epoch_train]
supervised_loss_seg = supervised_loss_seg[:last_epoch_train]
anatomy_loss_seg = anatomy_loss_seg[:last_epoch_train]
training_losses_reg = training_losses_reg[:last_epoch_train]
training_losses_seg = training_losses_seg[:last_epoch_train]
last_epoch = last_epoch_train
else:
if os.path.exists(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth')):
os.remove(os.path.join(result_seg_path, 'checkpoints', 'latest_checkpoint.pth'))
elif os.path.exists(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth')):
os.remove(os.path.join(result_reg_path, 'checkpoints', 'latest_checkpoint.pth'))
if len(dataloader_valid_reg) == 0:
validation_losses_reg = []
if len(dataloader_valid_seg) == 0:
validation_losses_seg = []
lambda_a = lam_a # anatomy loss weight
lambda_sp = lam_sp # supervised segmentation loss weight
# regularization loss weight
# monai has provided normalized bending energy loss
# no need to modify the weight according to the image size
lambda_r = lam_re
max_epochs = max_epoch
reg_phase_training_batches_per_epoch = 10
# Fewer batches needed, because seg_net converges more quickly
seg_phase_training_batches_per_epoch = 5
reg_phase_num_validation_batches_to_use = 10
val_interval = val_step
if plot_network:
plot_architecture(seg_net, img_shape, seg_phase_training_batches_per_epoch, 'SegNet', result_seg_path)
plot_architecture(reg_net, img_shape, reg_phase_training_batches_per_epoch, 'RegNet', result_reg_path)
logger.info('Start Training')
for epoch_number in range(last_epoch, max_epochs):
logger.info(f"Epoch {epoch_number+1}/{max_epochs}:")
# ------------------------------------------------
# reg_net training, with seg_net frozen
# ------------------------------------------------
# Keep computational graph in memory for reg_net, but not for seg_net, and do reg_net.train()
swap_training(reg_net, seg_net)
losses = []
regularization_loss = []
similarity_loss = []
anatomy_loss = []
for batch in batch_generator_train_reg(reg_phase_training_batches_per_epoch):
optimizer_reg.zero_grad()
loss_sim, loss_reg, loss_ana, df = reg_losses(
batch, device, reg_net, seg_net, num_segmentation_classes)
loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
loss.backward()
optimizer_reg.step()
losses.append(loss.item())
regularization_loss.append(loss_reg.item())
similarity_loss.append(loss_sim.item())
anatomy_loss.append(loss_ana.item())
#preview_3D_vector_field(df.cpu().detach()[0], ep=epoch_number, path=result_reg_path)
training_loss_reg = np.mean(losses)
regularization_loss_reg.append(
[epoch_number+1, np.mean(regularization_loss)])
similarity_loss_reg.append([epoch_number+1, np.mean(similarity_loss)])
anatomy_loss_reg.append([epoch_number+1, np.mean(anatomy_loss)])
logger.info(f"\treg training loss: {training_loss_reg}")
training_losses_reg.append([epoch_number+1, training_loss_reg])
logger.info("\tsave latest reg_net checkpoint")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='latest')
# validation process
if len(dataloader_valid_reg) == 0:
logger.info("\tno enough dataset for validation")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, training_loss_reg, sim_loss=similarity_loss_reg, regular_loss=regularization_loss_reg, ana_loss=anatomy_loss_reg, total_loss=training_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
else:
if epoch_number % val_interval == 0:
reg_net.eval()
losses = []
with torch.no_grad():
for batch in batch_generator_valid_reg(reg_phase_num_validation_batches_to_use):
loss_sim, loss_reg, loss_ana, dv = reg_losses(
batch, device, reg_net, seg_net, num_segmentation_classes)
loss = loss_sim + lambda_r * loss_reg + lambda_a * loss_ana
losses.append(loss.item())
validation_loss_reg = np.mean(losses)
logger.info(f"\treg validation loss: {validation_loss_reg}")
validation_losses_reg.append([epoch_number+1, validation_loss_reg])
if validation_loss_reg < best_reg_validation_loss:
best_reg_validation_loss = validation_loss_reg
logger.info("\tsave best reg_net checkpoint and model")
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, best_reg_validation_loss, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_best.pth')):
if os.path.exists(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth')):
os.remove(os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
os.rename(os.path.join(result_reg_path, 'model', 'reg_net_best.pth'), os.path.join(result_reg_path, 'model', 'reg_net_last_best.pth'))
torch.save(reg_net.state_dict(), os.path.join(result_reg_path, 'model', 'reg_net_best.pth'))
save_reg_checkpoint(reg_net, optimizer_reg, epoch_number, validation_loss_reg, total_loss=validation_losses_reg, save_dir=os.path.join(result_reg_path, 'checkpoints'), name='valid')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), training_losses_reg, validation_losses_reg, 'reg_net_training_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), regularization_loss_reg, [], 'regularization_reg_net_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), anatomy_loss_reg, [], 'anatomy_reg_net_loss')
plot_progress(logger, os.path.join(result_reg_path, 'training_plot'), similarity_loss_reg, [], 'similarity_reg_net_loss')
# scheduler_reg.step()
# Free up memory
del loss, loss_sim, loss_reg, loss_ana
torch.cuda.empty_cache()
# ------------------------------------------------
# seg_net training, with reg_net frozen
# ------------------------------------------------
# Keep computational graph in memory for seg_net, but not for reg_net, and do seg_net.train()
logger.info('\t'+'----'*10)
swap_training(seg_net, reg_net)
losses = []
supervised_loss = []
anatomy_loss = []
dice_loss = dice_loss_func()
warp = warp_func()
warp_nearest = warp_nearest_func()
dice_loss2 = dice_loss_func2()
for batch in batch_generator_train_seg(seg_phase_training_batches_per_epoch):
optimizer_seg.zero_grad()
img12 = batch['img12'].to(device)
displacement_fields = reg_net(img12)
seg1_predicted = seg_net(img12[:, [0], :, :, :]).softmax(dim=1)
seg2_predicted = seg_net(img12[:, [1], :, :, :]).softmax(dim=1)
# Below we compute the following:
# loss_supervised: supervised segmentation loss; compares ground truth seg with predicted seg
# loss_anatomy: anatomy loss; compares warped seg of moving image to seg of target image
# loss_metric: a single supervised seg loss, as a metric to track the progress of training
if 'seg1' in batch.keys() and 'seg2' in batch.keys():
seg1 = monai.networks.one_hot(
batch['seg1'].to(device), num_segmentation_classes)
seg2 = monai.networks.one_hot(
batch['seg2'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg2_predicted, seg2)
loss_supervised = loss_metric + dice_loss(seg1_predicted, seg1)
# The above supervised loss looks a bit different from the one in the paper
# in that it includes predictions for both images in the current image pair;
# we might as well do this, since we have gone to the trouble of loading
# both segmentations into memory.
elif 'seg1' in batch.keys(): # seg1 available, but no seg2
seg1 = monai.networks.one_hot(
batch['seg1'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg1_predicted, seg1)
loss_supervised = loss_metric
seg2 = seg2_predicted # Use this in anatomy loss
else: # seg2 available, but no seg1
assert('seg2' in batch.keys())
seg2 = monai.networks.one_hot(
batch['seg2'].to(device), num_segmentation_classes)
loss_metric = dice_loss(seg2_predicted, seg2)
loss_supervised = loss_metric
seg1 = seg1_predicted # Use this in anatomy loss
# seg1 and seg2 should now be in the form of one-hot class probabilities
loss_anatomy = dice_loss(warp_nearest(seg2, displacement_fields), seg1)\
if 'seg1' in batch.keys() or 'seg2' in batch.keys()\
else 0. # It wouldn't really be 0, but it would not contribute to training seg_net
# (If you want to refactor this code for *joint* training of reg_net and seg_net,
# then use the definition of anatomy loss given in the function anatomy_loss above,
# where differentiable warping is used and reg net can be trained with it.)
loss = lambda_a * loss_anatomy + lambda_sp * loss_supervised
loss.backward()
optimizer_seg.step()
losses.append(loss_metric.item())
supervised_loss.append(loss_supervised.item())
anatomy_loss.append(loss_anatomy.item())
training_loss_seg = np.mean(losses)
supervised_loss_seg.append([epoch_number+1, np.mean(supervised_loss)])
anatomy_loss_seg.append([epoch_number+1, np.mean(anatomy_loss)])
logger.info(f"\tseg training loss: {training_loss_seg}")
training_losses_seg.append([epoch_number+1, training_loss_seg])
logger.info("\tsave latest seg_net checkpoint")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='latest')
if len(dataloader_valid_seg) == 0:
logger.info("\tno enough dataset for validation")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, training_loss_seg, super_loss=supervised_loss_seg,ana_loss=anatomy_loss_seg, total_loss=training_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
else:
if epoch_number % val_interval == 0:
# The following validation loop would not do anything in the case
# where there is just one segmentation available,
# because data_seg_available_valid would be empty.
seg_net.eval()
losses = []
with torch.no_grad():
for batch in dataloader_valid_seg:
imgs = batch['img'].to(device)
true_segs = batch['seg'].to(device)
predicted_segs = seg_net(imgs)
loss = dice_loss2(predicted_segs, true_segs)
losses.append(loss.item())
validation_loss_seg = np.mean(losses)
logger.info(f"\tseg validation loss: {validation_loss_seg}")
validation_losses_seg.append([epoch_number+1, validation_loss_seg])
if validation_loss_seg < best_seg_validation_loss:
best_seg_validation_loss = validation_loss_seg
logger.info("\tsave best seg_net checkpoint and model")
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, best_seg_validation_loss, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='best')
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_best.pth')):
if os.path.exists(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth')):
os.remove(os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
os.rename(os.path.join(result_seg_path, 'model', 'seg_net_best.pth'), os.path.join(result_seg_path, 'model', 'seg_net_last_best.pth'))
torch.save(seg_net.state_dict(), os.path.join(result_seg_path, 'model', 'seg_net_best.pth'))
save_seg_checkpoint(seg_net, optimizer_seg, epoch_number, validation_loss_seg, total_loss=validation_losses_seg, save_dir=os.path.join(result_seg_path, 'checkpoints'), name='valid')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), training_losses_seg, validation_losses_seg, 'seg_net_training_loss')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), anatomy_loss_seg, [], 'anatomy_seg_net_loss')
plot_progress(logger, os.path.join(result_seg_path, 'training_plot'), supervised_loss_seg, [], 'supervised_seg_net_loss')
logger.info(f"\tseg lr: {optimizer_seg.param_groups[0]['lr']}")
logger.info(f"\treg lr: {optimizer_reg.param_groups[0]['lr']}")
# scheduler_seg.step()
# Free up memory
del (loss, seg1, seg2, displacement_fields, img12, loss_supervised, loss_anatomy, loss_metric,\
seg1_predicted, seg2_predicted)
torch.cuda.empty_cache()
if len(validation_losses_reg) == 0:
logger.info('Only small number of pairs are used for training, no need to do validation. Replace best validation loss with training loss !!!')
logger.info(f'Best reg_net validation loss: {training_loss_reg}')
else:
logger.info(f"Best reg_net validation loss: {best_reg_validation_loss}")
if len(validation_losses_seg) == 0:
logger.info('Only one label is used for training, no need to do validation. Replace best validation loss with training loss !!!')
logger.info(f'Best seg_net validation loss: {training_loss_seg}')
else:
logger.info(f"Best seg_net validation loss: {best_seg_validation_loss}")
# save reg training losses
reg_training_pkl = [{'training_losses': training_losses_reg},
{'anatomy_loss': anatomy_loss_reg},
{'similarity_loss': similarity_loss_reg},
{'regularization_loss': regularization_loss_reg}
]
if len(validation_losses_reg) != 0:
reg_training_pkl.append({'validation_losses': validation_losses_reg})
reg_training_pkl.append({'best_reg_validation_loss': best_reg_validation_loss})
else:
reg_training_pkl.append({'best_reg_validation_loss': training_loss_reg})
# save seg training losses
seg_training_pkl = [{'training_losses': training_losses_seg},
{'anatomy_loss': anatomy_loss_seg},
{'supervised_loss': supervised_loss_seg}
]
if len(validation_losses_seg) != 0:
seg_training_pkl.append({'validation_losses': validation_losses_seg})
seg_training_pkl.append({'best_seg_validation_loss': best_seg_validation_loss})
else:
seg_training_pkl.append({'best_seg_validation_loss': training_loss_seg})
with open(os.path.join(result_reg_path, 'training_plot', 'reg_training_losses.pkl'), 'wb') as f:
pickle.dump(reg_training_pkl, f)
with open(os.path.join(result_seg_path, 'training_plot', 'seg_training_losses.pkl'), 'wb') as ff:
pickle.dump(seg_training_pkl, ff) |