File size: 20,661 Bytes
2ca2f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
import seg_train
from pathlib import Path
from collections import OrderedDict
import json
import sys
import argparse
import os.path
import glob
import random
import matplotlib.pyplot as plt
import torch
import monai
import logging
import shutil
from collections import namedtuple
import numpy as np
import datetime

ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/preprocess'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/network'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/train'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/utils'))
from train import (
    train_network
)
from network import (
    regNet, segNet
)
from process_data import (
    split_data, load_seg_dataset, load_reg_dataset, take_data_pairs, subdivide_list_of_data_pairs
)
from utils import (
    load_json, make_if_dont_exist
)

def parse_command_line():
    parser = argparse.ArgumentParser(
        description='pipeline for deep atlas train')
    parser.add_argument('--config', metavar='path to the configuration file', type=str,
                        help='absolute path to the configuration file')
    parser.add_argument('--continue_training', action='store_true',
                        help='use this if you want to continue a training')
    parser.add_argument('--train_only', action='store_true',
                        help='only training or training plus test')
    parser.add_argument('--plot_network', action='store_true',
                        help='whether to plot the network')
    argv = parser.parse_args()
    return argv


def get_seg_net(spatial_dims, num_label, dropout, activation_type, normalization_type, num_res):
    seg_net = segNet(
        spatial_dim=spatial_dims,  # spatial dims
        in_channel=1,  # input channels
        out_channel=num_label,  # output channels
        channel=(8, 16, 16, 32, 32, 64, 64),  # channel sequence
        stride=(1, 2, 1, 2, 1, 2),  # convolutional strides
        dropouts=dropout,
        acts=activation_type,
        norms=normalization_type,
        num_res_unit=num_res
    )
    return seg_net


def get_reg_net(spatial_dims, num_label, dropout, activation_type, normalization_type, num_res):
    reg_net = regNet(
        spatial_dim=spatial_dims,  # spatial dims
        in_channel=2,  # input channels
        out_channel=num_label,  # output channels
        channel=(16, 32, 32, 32, 32),  # channel sequence
        stride=(1, 2, 2, 2),  # convolutional strides
        dropouts=dropout,
        acts=activation_type,
        norms=normalization_type,
        num_res_unit=num_res
    )
    return reg_net


def setup_logger(logger_name, log_file, level=logging.INFO):
    log_setup = logging.getLogger(logger_name)
    formatter = logging.Formatter('%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
    fileHandler = logging.FileHandler(log_file, mode='w')
    fileHandler.setFormatter(formatter)
    streamHandler = logging.StreamHandler()
    streamHandler.setFormatter(formatter)
    log_setup.setLevel(level)
    log_setup.addHandler(fileHandler)
    log_setup.addHandler(streamHandler)

def classify_data(data_info, fold):
    lab_each_fold = {}
    lab = []
    unlab = []
    total_seg = 0
    total_seg_each_fold = {}
    for key, value in data_info.items():
        if key != f'fold_{fold}':
            lab_each_fold[key] = []
            total_seg_each_fold[key] = 0
            for val in value:
                if 'seg' not in val.keys():
                    unlab.append(val)
                else:
                    lab_each_fold[key].append(val)
                    lab.append(val)
                    total_seg += 1
                    total_seg_each_fold[key] += 1
                    
    return lab_each_fold, lab, unlab, total_seg, total_seg_each_fold

def select_n_seg(lab, fold, num, total_seg_each_fold):
    seg_items = lab[f'fold_{fold}']
    num_seg = len(seg_items)
    rand_num = random.sample(range(num_seg), num)
    seg_item = np.array(seg_items)[np.array(rand_num)]
    seg_items.pop(rand_num[0])
    total_seg_each_fold[f'fold_{fold}'] -= 1
    lab[f'fold_{fold}'] = seg_items
    return list(seg_item), lab, total_seg_each_fold

def combine_data(data_info, fold, exp, num_seg):
    all_fold = np.arange(len(data_info.keys())) + 1
    num_train_fold = len(data_info.keys()) - 1
    fake_train_fold = np.delete(all_fold, fold-1)
    fake_train_fold = np.tile(fake_train_fold, 2)
    real_train_fold = fake_train_fold[fold-1:fold+num_train_fold-1]
    train = []
    test = []
    for j in data_info[f'fold_{fold}']:
        if 'seg' in j.keys():
            test.append(j)
    
    lab_each_fold, lab, unlab, total_seg, total_seg_each_fold = classify_data(data_info, fold)
    if total_seg < num_seg:
        num_seg = total_seg
    
    num_each_fold_seg = divmod(num_seg, num_train_fold)[0]
    fold_num_seg = np.repeat(num_each_fold_seg, num_train_fold)
    num_remain_seg = divmod(num_seg, num_train_fold)[1]
    count = 0
    while num_remain_seg > 0:
        fold_num_seg[count] += 1
        count = (count+1) % num_train_fold
        num_remain_seg -= 1
    
    train = unlab
    k = 0
    while num_seg > 0:
        next_fold = real_train_fold[k]
        if total_seg_each_fold[f'fold_{next_fold}'] > 0:
            seg_items, lab_each_fold, total_seg_each_fold = select_n_seg(lab_each_fold, next_fold, 1, total_seg_each_fold)
            train.extend(seg_items)     
            num_seg -= 1
        k = (k+1) % 4
            
    num_segs = 0
    if exp != 1:
        for key, value in total_seg_each_fold.items():
            if value != 0:
                for j in lab_each_fold[key]:
                    item = {'img': j['img']}
                    train.append(item)
                    total_seg_each_fold[key] -= 1
        for key, value in total_seg_each_fold.items():
            num_segs += value
        
        assert num_segs == 0
    
    return train, test


def main():
    args = parse_command_line()
    config = args.config
    continue_training = args.continue_training
    train_only = args.train_only
    config = load_json(config)
    config = namedtuple("config", config.keys())(*config.values())
    folder_name = config.folder_name
    num_seg_used = config.num_seg_used
    experiment_set = config.exp_set
    monai.utils.set_determinism(seed=2938649572)
    data_path = os.path.join(ROOT_DIR, 'deepatlas_results')
    base_path = os.path.join(ROOT_DIR, 'deepatlas_preprocessed')
    task = os.path.join(data_path, config.task_name)
    exp_path = os.path.join(task, f'set_{experiment_set}')
    gt_path = os.path.join(exp_path, f'{num_seg_used}gt')
    folder_path = os.path.join(gt_path, folder_name)
    result_path = os.path.join(folder_path, 'training_results')
    if train_only:
        info_name = 'info_train_only'
    else:
        info_name = 'info'
    info_path = os.path.join(base_path, config.task_name, 'Training_dataset', 'data_info', folder_name, info_name+'.json')
    info = load_json(info_path)
    if torch.cuda.is_available():
        device = torch.device("cuda:" + str(torch.cuda.current_device()))
    
    spatial_dim = config.network['spatial_dim']
    dropout = config.network['dropout']
    activation_type = config.network['activation_type']
    normalization_type = config.network['normalization_type']
    num_res = config.network['num_res']
    lr_reg = config.network["registration_network_learning_rate"]
    lr_seg = config.network["segmentation_network_learning_rate"]
    lam_a = config.network["anatomy_loss_weight"]
    lam_sp = config.network["supervised_segmentation_loss_weight"]
    lam_re = config.network["regularization_loss_weight"]
    max_epoch = config.network["number_epoch"]
    val_step = config.network["validation_step"]
    make_if_dont_exist(data_path)
    make_if_dont_exist(task)
    make_if_dont_exist(exp_path)
    make_if_dont_exist(gt_path)
    make_if_dont_exist(folder_path)
    make_if_dont_exist(result_path)
    
    if not continue_training:
        start_fold = 1
    else:
        folds = sorted(os.listdir(result_path))
        if len(folds) == 0:
            continue_training = False
            start_fold = 1
        else:
            last_fold_num = folds[-1].split('_')[-1]
            start_fold = int(last_fold_num)
    
    if train_only:
        num_fold = 1
    else:
        num_fold = config.num_fold
    
    for i in range (start_fold, num_fold+1):
        if not train_only:
            fold_path = os.path.join(result_path, f'fold_{i}')
            result_seg_path = os.path.join(fold_path, 'SegNet')
            result_reg_path = os.path.join(fold_path, 'RegNet')
        else:
            fold_path = os.path.join(result_path, f'all')
            result_seg_path = os.path.join(fold_path, 'SegNet')
            result_reg_path = os.path.join(fold_path, 'RegNet')
        
        make_if_dont_exist(fold_path)
        make_if_dont_exist(result_reg_path)
        make_if_dont_exist(result_seg_path)
        datetime_object = 'training_log_' + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") + '.log'
        log_path = os.path.join(fold_path, datetime_object)
        
        if not train_only:
            if not continue_training:
                setup_logger(f'log_{i}', log_path)
                logger = logging.getLogger(f'log_{i}')
                logger.info(f"Start Pipeline with fold_{i}")
            else:
                setup_logger(f'log_{i+1}', log_path)
                logger = logging.getLogger(f'log_{i+1}')
                logger.info(f"Resume Pipeline with fold_{i}")
        else:
            setup_logger(f'all', log_path)
            logger = logging.getLogger(f'all')
            logger.info(f"Start Pipeline with all data")

        if not os.path.exists(os.path.join(fold_path, 'dataset.json')):
            logger.info('prepare dataset into train and test')
            json_dict = OrderedDict()
            json_dict['name'] = os.path.basename(task).split('_')[0]
            json_dict['description'] = '_'.join(os.path.basename(task).split('_')[1:])
            json_dict['tensorImageSize'] = "4D"
            json_dict['reference'] = "MODIFY"
            json_dict['licence'] = "MODIFY"
            json_dict['release'] = "0.0"
            json_dict['modality'] = {
                "0": "CT"
            }
            json_dict['labels'] = config.labels
            json_dict['network'] = config.network
            json_dict['experiment_set'] = experiment_set
            if not train_only:
                json_dict['num_fold'] = f'fold_{i}'
                train, test = combine_data(info, i, experiment_set, num_seg_used)
            else:
                json_dict['num_fold'] = 'all'
                train = info
                test = []
                num_seg_used = len(list(filter(lambda d: 'seg' in d.keys(), train)))
            #num_seg = 15
            #train, test, num_train, num_test = split_data(img_path, seg_path, num_seg) 
            #print(type(train))
            
            num_seg = num_seg_used
            num_train = len(train)
            num_test = len(test)
            #print(train.keys())
            json_dict['total_numScanTraining'] = num_train
            json_dict['total_numLabelTraining'] = num_seg
            json_dict['total_numTest'] = num_test
            json_dict['total_train'] = train
            json_dict['total_test'] = test
            # prepare segmentation dataset
            logger.info('prepare segmentation dataset')
            data_seg_available = list(filter(lambda d: 'seg' in d.keys(), train))
            data_seg_unavailable = list(filter(lambda d: 'seg' not in d.keys(), train))
            data_seg_available_train, data_seg_available_valid = \
                monai.data.utils.partition_dataset(data_seg_available, ratios=(8, 2))
            json_dict['seg_numTrain'] = len(data_seg_available_train)
            json_dict['seg_train'] = data_seg_available_train
            json_dict['seg_numValid'] = len(data_seg_available_valid)
            json_dict['seg_valid'] = data_seg_available_valid
            dataset_seg_available_train, dataset_seg_available_valid = load_seg_dataset(
                data_seg_available_train, data_seg_available_valid)
            data_item = random.choice(dataset_seg_available_train)
            img_shape = data_item['seg'].unsqueeze(0).shape[2:]
            num_label = len(torch.unique(data_item['seg']))
            logger.info('prepare segmentation network')
            seg_net = get_seg_net(spatial_dim, num_label, dropout,
                                activation_type, normalization_type, num_res)
            # prepare registration dataset
            logger.info('prepare registration dataset')
            data_without_seg_valid = data_seg_unavailable + data_seg_available_train
            data_valid, data_train = monai.data.utils.partition_dataset(
                data_without_seg_valid,  # Note the order
                ratios=(2, 8),  # Note the order
                shuffle=False
            )
            data_paires_without_seg_valid = take_data_pairs(data_without_seg_valid)
            data_pairs_valid = take_data_pairs(data_valid)
            data_pairs_train = take_data_pairs(data_train)
            data_pairs_valid_subdivided = subdivide_list_of_data_pairs(
                data_pairs_valid)
            data_pairs_train_subdivided = subdivide_list_of_data_pairs(
                data_pairs_train)
            num_train_reg_net = len(data_pairs_train)
            num_valid_reg_net = len(data_pairs_valid)
            num_train_both = len(data_pairs_train_subdivided['01']) +\
                len(data_pairs_train_subdivided['10']) +\
                len(data_pairs_train_subdivided['11'])
            json_dict['reg_seg_numTrain'] = num_train_reg_net
            json_dict['reg_seg_numTrain_00'] = len(data_pairs_train_subdivided['00'])
            json_dict['reg_seg_train_00'] = data_pairs_train_subdivided['00']
            json_dict['reg_seg_numTrain_01'] = len(data_pairs_train_subdivided['01'])
            json_dict['reg_seg_train_01'] = data_pairs_train_subdivided['01']
            json_dict['reg_seg_numTrain_10'] = len(data_pairs_train_subdivided['10'])
            json_dict['reg_seg_train_10'] = data_pairs_train_subdivided['10']
            json_dict['reg_seg_numTrain_11'] = len(data_pairs_train_subdivided['11'])
            json_dict['reg_seg_train_11'] = data_pairs_train_subdivided['11']
            json_dict['reg_numValid'] = num_valid_reg_net
            json_dict['reg_numValid_00'] = len(data_pairs_valid_subdivided['00'])
            json_dict['reg_valid_00'] = data_pairs_valid_subdivided['00']
            json_dict['reg_numValid_01'] = len(data_pairs_valid_subdivided['01'])
            json_dict['reg_valid_01'] = data_pairs_valid_subdivided['01']
            json_dict['reg_numValid_10'] = len(data_pairs_valid_subdivided['10'])
            json_dict['reg_valid_10'] = data_pairs_valid_subdivided['10']
            json_dict['reg_numValid_11'] = len(data_pairs_valid_subdivided['11'])
            json_dict['reg_valid_11'] = data_pairs_valid_subdivided['11']
            print(f"""We have {num_train_both} pairs to train reg_net and seg_net together, and an additional {num_train_reg_net - num_train_both} to train reg_net alone.""")
            print(f"We have {num_valid_reg_net} pairs for reg_net validation.")

            dataset_pairs_train_subdivided, dataset_pairs_valid_subdivided = load_reg_dataset(
                data_pairs_train_subdivided, data_pairs_valid_subdivided)
            logger.info('prepare registration network')
            reg_net = get_reg_net(spatial_dim, spatial_dim, dropout,
                                activation_type, normalization_type, num_res)
            logger.info('generate dataset json file')
            with open(os.path.join(fold_path, 'dataset.json'), 'w') as f:
                json.dump(json_dict, f, indent=4, sort_keys=False)

        else:
            dataset_json = load_json(os.path.join(fold_path, 'dataset.json'))
            
            data_seg_available_train = dataset_json['seg_train']
            data_seg_available_valid = dataset_json['seg_valid']
            dataset_seg_available_train, dataset_seg_available_valid = load_seg_dataset(data_seg_available_train, data_seg_available_valid)
            data_item = random.choice(dataset_seg_available_train)
            img_shape = data_item['seg'].unsqueeze(0).shape[2:]
            num_label = len(torch.unique(data_item['seg']))
            logger.info('prepare segmentation network')
            seg_net = get_seg_net(spatial_dim, num_label, dropout, activation_type, normalization_type, num_res)
            
            data_pairs_train_subdivided = {
                '00': dataset_json['reg_seg_train_00'],
                '01': dataset_json['reg_seg_train_01'],
                '10': dataset_json['reg_seg_train_10'],
                '11': dataset_json['reg_seg_train_11']
            }
            data_pairs_valid_subdivided = {
                '00': dataset_json['reg_valid_00'],
                '01': dataset_json['reg_valid_01'],
                '10': dataset_json['reg_valid_10'],
                '11': dataset_json['reg_valid_11']
            }
            num_train_reg_net = dataset_json['reg_seg_numTrain']
            num_valid_reg_net = dataset_json['reg_numValid']
            num_train_both = len(data_pairs_train_subdivided['01']) +\
                len(data_pairs_train_subdivided['10']) +\
                len(data_pairs_train_subdivided['11'])
            print(f"""We have {num_train_both} pairs to train reg_net and seg_net together,
            and an additional {num_train_reg_net - num_train_both} to train reg_net alone.""")
            print(f"We have {num_valid_reg_net} pairs for reg_net validation.")

            dataset_pairs_train_subdivided, dataset_pairs_valid_subdivided = load_reg_dataset(
                data_pairs_train_subdivided, data_pairs_valid_subdivided)
            logger.info('prepare registration network')
            reg_net = get_reg_net(spatial_dim, spatial_dim, dropout,
                                activation_type, normalization_type, num_res)

        
        dataloader_train_seg = monai.data.DataLoader(
            dataset_seg_available_train,
            batch_size=2,
            num_workers=4,
            shuffle=True
        )
        dataloader_valid_seg = monai.data.DataLoader(
            dataset_seg_available_valid,
            batch_size=4,
            num_workers=4,
            shuffle=False
        )
        dataloader_train_reg = {
            seg_availability: monai.data.DataLoader(
                dataset,
                batch_size=1,
                num_workers=4,
                shuffle=True
            )
            # empty dataloaders are not a thing-- put an empty list if needed
            if len(dataset) > 0 else []
            for seg_availability, dataset in dataset_pairs_train_subdivided.items()
        }
        dataloader_valid_reg = {
            seg_availability: monai.data.DataLoader(
                dataset,
                batch_size=2,
                num_workers=4,
                shuffle=True  # Shuffle validation data because we will only take a sample for validation each time
            )
            # empty dataloaders are not a thing-- put an empty list if needed
            if len(dataset) > 0 else []
            for seg_availability, dataset in dataset_pairs_valid_subdivided.items()
        }
        train_network(dataloader_train_reg,
                      dataloader_valid_reg,
                      dataloader_train_seg,
                      dataloader_valid_seg,
                      device,
                      seg_net,
                      reg_net,
                      num_label,
                      lr_reg,
                      lr_seg,
                      lam_a,
                      lam_sp,
                      lam_re,
                      max_epoch,
                      val_step,
                      result_seg_path,
                      result_reg_path,
                      logger,
                      img_shape,
                      plot_network=args.plot_network,
                      continue_training=continue_training
                      )
    '''
    seg_train.train_seg(
        dataloader_train_seg,
        dataloader_valid_seg,
        device,
        seg_net,
        lr_seg,
        max_epoch,
        val_step,
        result_seg_path
    )
    '''

if __name__ == '__main__':
    torch.cuda.empty_cache()
    main()