File size: 20,661 Bytes
2ca2f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
import seg_train
from pathlib import Path
from collections import OrderedDict
import json
import sys
import argparse
import os.path
import glob
import random
import matplotlib.pyplot as plt
import torch
import monai
import logging
import shutil
from collections import namedtuple
import numpy as np
import datetime
ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/preprocess'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/network'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/train'))
sys.path.insert(0, os.path.join(ROOT_DIR, 'deepatlas/utils'))
from train import (
train_network
)
from network import (
regNet, segNet
)
from process_data import (
split_data, load_seg_dataset, load_reg_dataset, take_data_pairs, subdivide_list_of_data_pairs
)
from utils import (
load_json, make_if_dont_exist
)
def parse_command_line():
parser = argparse.ArgumentParser(
description='pipeline for deep atlas train')
parser.add_argument('--config', metavar='path to the configuration file', type=str,
help='absolute path to the configuration file')
parser.add_argument('--continue_training', action='store_true',
help='use this if you want to continue a training')
parser.add_argument('--train_only', action='store_true',
help='only training or training plus test')
parser.add_argument('--plot_network', action='store_true',
help='whether to plot the network')
argv = parser.parse_args()
return argv
def get_seg_net(spatial_dims, num_label, dropout, activation_type, normalization_type, num_res):
seg_net = segNet(
spatial_dim=spatial_dims, # spatial dims
in_channel=1, # input channels
out_channel=num_label, # output channels
channel=(8, 16, 16, 32, 32, 64, 64), # channel sequence
stride=(1, 2, 1, 2, 1, 2), # convolutional strides
dropouts=dropout,
acts=activation_type,
norms=normalization_type,
num_res_unit=num_res
)
return seg_net
def get_reg_net(spatial_dims, num_label, dropout, activation_type, normalization_type, num_res):
reg_net = regNet(
spatial_dim=spatial_dims, # spatial dims
in_channel=2, # input channels
out_channel=num_label, # output channels
channel=(16, 32, 32, 32, 32), # channel sequence
stride=(1, 2, 2, 2), # convolutional strides
dropouts=dropout,
acts=activation_type,
norms=normalization_type,
num_res_unit=num_res
)
return reg_net
def setup_logger(logger_name, log_file, level=logging.INFO):
log_setup = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
fileHandler = logging.FileHandler(log_file, mode='w')
fileHandler.setFormatter(formatter)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
log_setup.setLevel(level)
log_setup.addHandler(fileHandler)
log_setup.addHandler(streamHandler)
def classify_data(data_info, fold):
lab_each_fold = {}
lab = []
unlab = []
total_seg = 0
total_seg_each_fold = {}
for key, value in data_info.items():
if key != f'fold_{fold}':
lab_each_fold[key] = []
total_seg_each_fold[key] = 0
for val in value:
if 'seg' not in val.keys():
unlab.append(val)
else:
lab_each_fold[key].append(val)
lab.append(val)
total_seg += 1
total_seg_each_fold[key] += 1
return lab_each_fold, lab, unlab, total_seg, total_seg_each_fold
def select_n_seg(lab, fold, num, total_seg_each_fold):
seg_items = lab[f'fold_{fold}']
num_seg = len(seg_items)
rand_num = random.sample(range(num_seg), num)
seg_item = np.array(seg_items)[np.array(rand_num)]
seg_items.pop(rand_num[0])
total_seg_each_fold[f'fold_{fold}'] -= 1
lab[f'fold_{fold}'] = seg_items
return list(seg_item), lab, total_seg_each_fold
def combine_data(data_info, fold, exp, num_seg):
all_fold = np.arange(len(data_info.keys())) + 1
num_train_fold = len(data_info.keys()) - 1
fake_train_fold = np.delete(all_fold, fold-1)
fake_train_fold = np.tile(fake_train_fold, 2)
real_train_fold = fake_train_fold[fold-1:fold+num_train_fold-1]
train = []
test = []
for j in data_info[f'fold_{fold}']:
if 'seg' in j.keys():
test.append(j)
lab_each_fold, lab, unlab, total_seg, total_seg_each_fold = classify_data(data_info, fold)
if total_seg < num_seg:
num_seg = total_seg
num_each_fold_seg = divmod(num_seg, num_train_fold)[0]
fold_num_seg = np.repeat(num_each_fold_seg, num_train_fold)
num_remain_seg = divmod(num_seg, num_train_fold)[1]
count = 0
while num_remain_seg > 0:
fold_num_seg[count] += 1
count = (count+1) % num_train_fold
num_remain_seg -= 1
train = unlab
k = 0
while num_seg > 0:
next_fold = real_train_fold[k]
if total_seg_each_fold[f'fold_{next_fold}'] > 0:
seg_items, lab_each_fold, total_seg_each_fold = select_n_seg(lab_each_fold, next_fold, 1, total_seg_each_fold)
train.extend(seg_items)
num_seg -= 1
k = (k+1) % 4
num_segs = 0
if exp != 1:
for key, value in total_seg_each_fold.items():
if value != 0:
for j in lab_each_fold[key]:
item = {'img': j['img']}
train.append(item)
total_seg_each_fold[key] -= 1
for key, value in total_seg_each_fold.items():
num_segs += value
assert num_segs == 0
return train, test
def main():
args = parse_command_line()
config = args.config
continue_training = args.continue_training
train_only = args.train_only
config = load_json(config)
config = namedtuple("config", config.keys())(*config.values())
folder_name = config.folder_name
num_seg_used = config.num_seg_used
experiment_set = config.exp_set
monai.utils.set_determinism(seed=2938649572)
data_path = os.path.join(ROOT_DIR, 'deepatlas_results')
base_path = os.path.join(ROOT_DIR, 'deepatlas_preprocessed')
task = os.path.join(data_path, config.task_name)
exp_path = os.path.join(task, f'set_{experiment_set}')
gt_path = os.path.join(exp_path, f'{num_seg_used}gt')
folder_path = os.path.join(gt_path, folder_name)
result_path = os.path.join(folder_path, 'training_results')
if train_only:
info_name = 'info_train_only'
else:
info_name = 'info'
info_path = os.path.join(base_path, config.task_name, 'Training_dataset', 'data_info', folder_name, info_name+'.json')
info = load_json(info_path)
if torch.cuda.is_available():
device = torch.device("cuda:" + str(torch.cuda.current_device()))
spatial_dim = config.network['spatial_dim']
dropout = config.network['dropout']
activation_type = config.network['activation_type']
normalization_type = config.network['normalization_type']
num_res = config.network['num_res']
lr_reg = config.network["registration_network_learning_rate"]
lr_seg = config.network["segmentation_network_learning_rate"]
lam_a = config.network["anatomy_loss_weight"]
lam_sp = config.network["supervised_segmentation_loss_weight"]
lam_re = config.network["regularization_loss_weight"]
max_epoch = config.network["number_epoch"]
val_step = config.network["validation_step"]
make_if_dont_exist(data_path)
make_if_dont_exist(task)
make_if_dont_exist(exp_path)
make_if_dont_exist(gt_path)
make_if_dont_exist(folder_path)
make_if_dont_exist(result_path)
if not continue_training:
start_fold = 1
else:
folds = sorted(os.listdir(result_path))
if len(folds) == 0:
continue_training = False
start_fold = 1
else:
last_fold_num = folds[-1].split('_')[-1]
start_fold = int(last_fold_num)
if train_only:
num_fold = 1
else:
num_fold = config.num_fold
for i in range (start_fold, num_fold+1):
if not train_only:
fold_path = os.path.join(result_path, f'fold_{i}')
result_seg_path = os.path.join(fold_path, 'SegNet')
result_reg_path = os.path.join(fold_path, 'RegNet')
else:
fold_path = os.path.join(result_path, f'all')
result_seg_path = os.path.join(fold_path, 'SegNet')
result_reg_path = os.path.join(fold_path, 'RegNet')
make_if_dont_exist(fold_path)
make_if_dont_exist(result_reg_path)
make_if_dont_exist(result_seg_path)
datetime_object = 'training_log_' + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S") + '.log'
log_path = os.path.join(fold_path, datetime_object)
if not train_only:
if not continue_training:
setup_logger(f'log_{i}', log_path)
logger = logging.getLogger(f'log_{i}')
logger.info(f"Start Pipeline with fold_{i}")
else:
setup_logger(f'log_{i+1}', log_path)
logger = logging.getLogger(f'log_{i+1}')
logger.info(f"Resume Pipeline with fold_{i}")
else:
setup_logger(f'all', log_path)
logger = logging.getLogger(f'all')
logger.info(f"Start Pipeline with all data")
if not os.path.exists(os.path.join(fold_path, 'dataset.json')):
logger.info('prepare dataset into train and test')
json_dict = OrderedDict()
json_dict['name'] = os.path.basename(task).split('_')[0]
json_dict['description'] = '_'.join(os.path.basename(task).split('_')[1:])
json_dict['tensorImageSize'] = "4D"
json_dict['reference'] = "MODIFY"
json_dict['licence'] = "MODIFY"
json_dict['release'] = "0.0"
json_dict['modality'] = {
"0": "CT"
}
json_dict['labels'] = config.labels
json_dict['network'] = config.network
json_dict['experiment_set'] = experiment_set
if not train_only:
json_dict['num_fold'] = f'fold_{i}'
train, test = combine_data(info, i, experiment_set, num_seg_used)
else:
json_dict['num_fold'] = 'all'
train = info
test = []
num_seg_used = len(list(filter(lambda d: 'seg' in d.keys(), train)))
#num_seg = 15
#train, test, num_train, num_test = split_data(img_path, seg_path, num_seg)
#print(type(train))
num_seg = num_seg_used
num_train = len(train)
num_test = len(test)
#print(train.keys())
json_dict['total_numScanTraining'] = num_train
json_dict['total_numLabelTraining'] = num_seg
json_dict['total_numTest'] = num_test
json_dict['total_train'] = train
json_dict['total_test'] = test
# prepare segmentation dataset
logger.info('prepare segmentation dataset')
data_seg_available = list(filter(lambda d: 'seg' in d.keys(), train))
data_seg_unavailable = list(filter(lambda d: 'seg' not in d.keys(), train))
data_seg_available_train, data_seg_available_valid = \
monai.data.utils.partition_dataset(data_seg_available, ratios=(8, 2))
json_dict['seg_numTrain'] = len(data_seg_available_train)
json_dict['seg_train'] = data_seg_available_train
json_dict['seg_numValid'] = len(data_seg_available_valid)
json_dict['seg_valid'] = data_seg_available_valid
dataset_seg_available_train, dataset_seg_available_valid = load_seg_dataset(
data_seg_available_train, data_seg_available_valid)
data_item = random.choice(dataset_seg_available_train)
img_shape = data_item['seg'].unsqueeze(0).shape[2:]
num_label = len(torch.unique(data_item['seg']))
logger.info('prepare segmentation network')
seg_net = get_seg_net(spatial_dim, num_label, dropout,
activation_type, normalization_type, num_res)
# prepare registration dataset
logger.info('prepare registration dataset')
data_without_seg_valid = data_seg_unavailable + data_seg_available_train
data_valid, data_train = monai.data.utils.partition_dataset(
data_without_seg_valid, # Note the order
ratios=(2, 8), # Note the order
shuffle=False
)
data_paires_without_seg_valid = take_data_pairs(data_without_seg_valid)
data_pairs_valid = take_data_pairs(data_valid)
data_pairs_train = take_data_pairs(data_train)
data_pairs_valid_subdivided = subdivide_list_of_data_pairs(
data_pairs_valid)
data_pairs_train_subdivided = subdivide_list_of_data_pairs(
data_pairs_train)
num_train_reg_net = len(data_pairs_train)
num_valid_reg_net = len(data_pairs_valid)
num_train_both = len(data_pairs_train_subdivided['01']) +\
len(data_pairs_train_subdivided['10']) +\
len(data_pairs_train_subdivided['11'])
json_dict['reg_seg_numTrain'] = num_train_reg_net
json_dict['reg_seg_numTrain_00'] = len(data_pairs_train_subdivided['00'])
json_dict['reg_seg_train_00'] = data_pairs_train_subdivided['00']
json_dict['reg_seg_numTrain_01'] = len(data_pairs_train_subdivided['01'])
json_dict['reg_seg_train_01'] = data_pairs_train_subdivided['01']
json_dict['reg_seg_numTrain_10'] = len(data_pairs_train_subdivided['10'])
json_dict['reg_seg_train_10'] = data_pairs_train_subdivided['10']
json_dict['reg_seg_numTrain_11'] = len(data_pairs_train_subdivided['11'])
json_dict['reg_seg_train_11'] = data_pairs_train_subdivided['11']
json_dict['reg_numValid'] = num_valid_reg_net
json_dict['reg_numValid_00'] = len(data_pairs_valid_subdivided['00'])
json_dict['reg_valid_00'] = data_pairs_valid_subdivided['00']
json_dict['reg_numValid_01'] = len(data_pairs_valid_subdivided['01'])
json_dict['reg_valid_01'] = data_pairs_valid_subdivided['01']
json_dict['reg_numValid_10'] = len(data_pairs_valid_subdivided['10'])
json_dict['reg_valid_10'] = data_pairs_valid_subdivided['10']
json_dict['reg_numValid_11'] = len(data_pairs_valid_subdivided['11'])
json_dict['reg_valid_11'] = data_pairs_valid_subdivided['11']
print(f"""We have {num_train_both} pairs to train reg_net and seg_net together, and an additional {num_train_reg_net - num_train_both} to train reg_net alone.""")
print(f"We have {num_valid_reg_net} pairs for reg_net validation.")
dataset_pairs_train_subdivided, dataset_pairs_valid_subdivided = load_reg_dataset(
data_pairs_train_subdivided, data_pairs_valid_subdivided)
logger.info('prepare registration network')
reg_net = get_reg_net(spatial_dim, spatial_dim, dropout,
activation_type, normalization_type, num_res)
logger.info('generate dataset json file')
with open(os.path.join(fold_path, 'dataset.json'), 'w') as f:
json.dump(json_dict, f, indent=4, sort_keys=False)
else:
dataset_json = load_json(os.path.join(fold_path, 'dataset.json'))
data_seg_available_train = dataset_json['seg_train']
data_seg_available_valid = dataset_json['seg_valid']
dataset_seg_available_train, dataset_seg_available_valid = load_seg_dataset(data_seg_available_train, data_seg_available_valid)
data_item = random.choice(dataset_seg_available_train)
img_shape = data_item['seg'].unsqueeze(0).shape[2:]
num_label = len(torch.unique(data_item['seg']))
logger.info('prepare segmentation network')
seg_net = get_seg_net(spatial_dim, num_label, dropout, activation_type, normalization_type, num_res)
data_pairs_train_subdivided = {
'00': dataset_json['reg_seg_train_00'],
'01': dataset_json['reg_seg_train_01'],
'10': dataset_json['reg_seg_train_10'],
'11': dataset_json['reg_seg_train_11']
}
data_pairs_valid_subdivided = {
'00': dataset_json['reg_valid_00'],
'01': dataset_json['reg_valid_01'],
'10': dataset_json['reg_valid_10'],
'11': dataset_json['reg_valid_11']
}
num_train_reg_net = dataset_json['reg_seg_numTrain']
num_valid_reg_net = dataset_json['reg_numValid']
num_train_both = len(data_pairs_train_subdivided['01']) +\
len(data_pairs_train_subdivided['10']) +\
len(data_pairs_train_subdivided['11'])
print(f"""We have {num_train_both} pairs to train reg_net and seg_net together,
and an additional {num_train_reg_net - num_train_both} to train reg_net alone.""")
print(f"We have {num_valid_reg_net} pairs for reg_net validation.")
dataset_pairs_train_subdivided, dataset_pairs_valid_subdivided = load_reg_dataset(
data_pairs_train_subdivided, data_pairs_valid_subdivided)
logger.info('prepare registration network')
reg_net = get_reg_net(spatial_dim, spatial_dim, dropout,
activation_type, normalization_type, num_res)
dataloader_train_seg = monai.data.DataLoader(
dataset_seg_available_train,
batch_size=2,
num_workers=4,
shuffle=True
)
dataloader_valid_seg = monai.data.DataLoader(
dataset_seg_available_valid,
batch_size=4,
num_workers=4,
shuffle=False
)
dataloader_train_reg = {
seg_availability: monai.data.DataLoader(
dataset,
batch_size=1,
num_workers=4,
shuffle=True
)
# empty dataloaders are not a thing-- put an empty list if needed
if len(dataset) > 0 else []
for seg_availability, dataset in dataset_pairs_train_subdivided.items()
}
dataloader_valid_reg = {
seg_availability: monai.data.DataLoader(
dataset,
batch_size=2,
num_workers=4,
shuffle=True # Shuffle validation data because we will only take a sample for validation each time
)
# empty dataloaders are not a thing-- put an empty list if needed
if len(dataset) > 0 else []
for seg_availability, dataset in dataset_pairs_valid_subdivided.items()
}
train_network(dataloader_train_reg,
dataloader_valid_reg,
dataloader_train_seg,
dataloader_valid_seg,
device,
seg_net,
reg_net,
num_label,
lr_reg,
lr_seg,
lam_a,
lam_sp,
lam_re,
max_epoch,
val_step,
result_seg_path,
result_reg_path,
logger,
img_shape,
plot_network=args.plot_network,
continue_training=continue_training
)
'''
seg_train.train_seg(
dataloader_train_seg,
dataloader_valid_seg,
device,
seg_net,
lr_seg,
max_epoch,
val_step,
result_seg_path
)
'''
if __name__ == '__main__':
torch.cuda.empty_cache()
main()
|