File size: 13,562 Bytes
2ca2f68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import os
import ants
import nrrd
import numpy as np
import glob
import slicerio
import shutil
import argparse
from pathlib import Path
def parse_command_line():
print('---'*10)
print('Parsing Command Line Arguments')
parser = argparse.ArgumentParser(
description='pipeline for dataset co-alignment')
parser.add_argument('-bp', metavar='base path', type=str,
help="absolute path of the base directory")
parser.add_argument('-op', metavar='output path for both registration & crop steps', type=str,
help="relative path of the output directory, should be same name in the registration, crop and final prediction steps")
parser.add_argument('-template', metavar='template scan path', type=str,
help="relative path of the template scan directory")
parser.add_argument('-target_scan', metavar='target scan path', type=str,
help="relative path of the target image directory")
parser.add_argument('-target_seg', metavar='target segmentation path', type=str,
help="relative path of the target segmentation directory")
parser.add_argument('-sl', metavar='segmentation information list', type=str, nargs='+',
help='a list of label name and corresponding value')
parser.add_argument('-ti', metavar='task id and name', type=str,
help='task name and id')
argv = parser.parse_args()
return argv
def split_and_registration(template, target, base, template_images_path, target_images_path, seg_path, img_out_path, seg_out_path, template_fomat, target_fomat, has_label=False):
print('---'*10)
print('Creating file paths')
# Define the path for template, target, and segmentations (from template)
fixed_path = os.path.join(base, template_images_path, template + '.' + template_fomat)
moving_path = os.path.join(base, target_images_path, target + '.' + target_fomat)
images_output = os.path.join(img_out_path, target + '.nii.gz')
print('---'*10)
print('Reading in the template and target image')
# Read the template and target image
template_image = ants.image_read(fixed_path)
target_image = ants.image_read(moving_path)
print('---'*10)
print('Performing the template and target image registration')
transform_forward = ants.registration(fixed=template_image, moving=target_image,
type_of_transform="Similarity", verbose=False)
if has_label:
segmentation_path = os.path.join(
base, seg_path, target + '.nii.gz')
segmentation_output = os.path.join(
seg_out_path, target + '.nii.gz')
print('---'*10)
print('Reading in the segmentation')
# Split segmentations into individual components
segment_target = ants.image_read(segmentation_path)
print('---'*10)
print('Applying the transformation for label propagation and image registration')
predicted_targets_image = ants.apply_transforms(
fixed=template_image,
moving=segment_target,
transformlist=transform_forward["fwdtransforms"],
interpolator="genericLabel",
verbose=False)
predicted_targets_image.to_file(segmentation_output)
reg_img = ants.apply_transforms(
fixed=template_image,
moving=target_image,
transformlist=transform_forward["fwdtransforms"],
interpolator="linear",
verbose=False)
print('---'*10)
print("writing out transformed template segmentation")
reg_img.to_file(images_output)
print('Label Propagation & Image Registration complete')
def convert_to_one_hot(data, header, segment_indices=None):
print('---'*10)
print("converting to one hot")
layer_values = get_layer_values(header)
label_values = get_label_values(header)
# Newer Slicer NRRD (compressed layers)
if layer_values and label_values:
assert len(layer_values) == len(label_values)
if len(data.shape) == 3:
x_dim, y_dim, z_dim = data.shape
elif len(data.shape) == 4:
x_dim, y_dim, z_dim = data.shape[1:]
num_segments = len(layer_values)
one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))
if segment_indices is None:
segment_indices = list(range(num_segments))
elif isinstance(segment_indices, int):
segment_indices = [segment_indices]
elif not isinstance(segment_indices, list):
print("incorrectly specified segment indices")
return
# Check if NRRD is composed of one layer 0
if np.max(layer_values) == 0:
for i, seg_idx in enumerate(segment_indices):
layer = layer_values[seg_idx]
label = label_values[seg_idx]
one_hot[i] = 1*(data == label).astype(np.uint8)
else:
for i, seg_idx in enumerate(segment_indices):
layer = layer_values[seg_idx]
label = label_values[seg_idx]
one_hot[i] = 1*(data[layer] == label).astype(np.uint8)
# Binary labelmap
elif len(data.shape) == 3:
x_dim, y_dim, z_dim = data.shape
num_segments = np.max(data)
one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))
if segment_indices is None:
segment_indices = list(range(1, num_segments + 1))
elif isinstance(segment_indices, int):
segment_indices = [segment_indices]
elif not isinstance(segment_indices, list):
print("incorrectly specified segment indices")
return
for i, seg_idx in enumerate(segment_indices):
one_hot[i] = 1*(data == seg_idx).astype(np.uint8)
# Older Slicer NRRD (already one-hot)
else:
return data
return one_hot
def get_layer_values(header, indices=None):
layer_values = []
num_segments = len([key for key in header.keys() if "Layer" in key])
for i in range(num_segments):
layer_values.append(int(header['Segment{}_Layer'.format(i)]))
return layer_values
def get_label_values(header, indices=None):
label_values = []
num_segments = len([key for key in header.keys() if "LabelValue" in key])
for i in range(num_segments):
label_values.append(int(header['Segment{}_LabelValue'.format(i)]))
return label_values
def get_num_segments(header, indices=None):
num_segments = len([key for key in header.keys() if "LabelValue" in key])
return num_segments
def checkCorrespondence(segmentation, base, paired_list, filename):
print(filename)
assert type(paired_list) == list
data, tempSeg = nrrd.read(os.path.join(base, segmentation, filename))
seg_info = slicerio.read_segmentation_info(
os.path.join(base, segmentation, filename))
output_voxels, output_header = slicerio.extract_segments(
data, tempSeg, seg_info, paired_list)
output = os.path.join(base, 'MatchedSegs/' +
filename)
nrrd.write(output, output_voxels, output_header)
print('---'*10)
print('Check the label names and values')
print(slicerio.read_segmentation_info(output))
return output
def checkSegFormat(base, segmentation, paired_list, check=False):
path = os.path.join(base, segmentation)
save_dir = os.path.join(base, 're-format_labels')
try:
os.mkdir(save_dir)
except:
print(f'{save_dir} already exists')
for file in os.listdir(path):
name = file.split('.')[0]
if file.endswith('seg.nrrd') or file.endswith('nrrd'):
if check:
output_path = checkCorrespondence(
segmentation, base, paired_list, file)
ants_img = ants.image_read(output_path)
header = nrrd.read_header(output_path)
else:
ants_img = ants.image_read(os.path.join(path, file))
header = nrrd.read_header(os.path.join(path, file))
segmentations = True
filename = os.path.join(save_dir, name + '.nii.gz')
nrrd2nifti(ants_img, header, filename, segmentations)
elif file.endswith('nii'):
image = ants.image_read(os.path.join(path, file))
image.to_file(os.path.join(save_dir, name + '.nii.gz'))
elif file.endswith('nii.gz'):
shutil.copy(os.path.join(path, file), save_dir)
return save_dir
def nrrd2nifti(img, header, filename, segmentations=True):
img_as_np = img.view(single_components=segmentations)
if segmentations:
data = convert_to_one_hot(img_as_np, header)
foreground = np.max(data, axis=0)
labelmap = np.multiply(np.argmax(data, axis=0) + 1,
foreground).astype('uint8')
segmentation_img = ants.from_numpy(
labelmap, origin=img.origin, spacing=img.spacing, direction=img.direction)
print('-- Saving NII Segmentations')
segmentation_img.to_file(filename)
else:
print('-- Saving NII Volume')
img.to_file(filename)
def find_template(base, image_path, fomat):
scans = sorted(glob.glob(os.path.join(base, image_path) + '/*' + fomat))
template = os.path.basename(scans[0]).split('.')[0]
return template
def find_template_V2(base, image_path, fomat):
maxD = -np.inf
for i in glob.glob(os.path.join(base, image_path) + '/*' + fomat):
id = os.path.basename(i).split('.')[0]
img = ants.image_read(i)
thirdD = img.shape[2]
if thirdD > maxD:
template = id
maxD = thirdD
return template
def path_to_id(path, fomat):
ids = []
for i in glob.glob(path + '/*' + fomat):
id = os.path.basename(i).split('.')[0]
ids.append(id)
return ids
def checkFormat(base, images_path):
path = os.path.join(base, images_path)
for file in os.listdir(path):
if file.endswith('.nii'):
ret = 'nii'
break
elif file.endswith('.nii.gz'):
ret = 'nii.gz'
break
elif file.endswith('.nrrd'):
ret = 'nrrd'
break
elif file.endswith('.seg.nrrd'):
ret = 'seg.nrrd'
break
return ret
def main():
ROOT_DIR = str(Path(os.getcwd()).parent.parent.absolute())
args = parse_command_line()
base = args.bp
template_path = args.template
target_seg = args.target_seg
target_scan = args.target_scan
label_list = args.sl
task_id = args.ti
deepatlas_path = ROOT_DIR
task_path = os.path.join(deepatlas_path, 'deepatlas_raw_data_base', task_id)
output_data_path = os.path.join(task_path, 'customize_test_data')
out_data_path = os.path.join(output_data_path, args.op)
images_output = os.path.join(out_data_path, 'images')
labels_output = os.path.join(out_data_path, 'labels')
template_fomat = checkFormat(base, template_path)
target_fomat = checkFormat(base, target_scan)
fomat_seg = checkFormat(base, target_seg)
template = os.path.basename(glob.glob(os.path.join(base, template_path) + '/*' + template_fomat)[0]).split('.')[0]
label_lists = path_to_id(os.path.join(base, target_seg), fomat_seg)
if label_list is not None:
matched_output = os.path.join(base, 'MatchedSegs')
try:
os.mkdir(matched_output)
except:
print(f"{matched_output} already exists")
try:
os.mkdir(output_data_path)
except:
print(f"{output_data_path} already exists")
try:
os.mkdir(out_data_path)
except:
print(f"{out_data_path} already exists")
try:
os.mkdir(images_output)
except:
print(f"{images_output} already exists")
try:
os.mkdir(labels_output)
except:
print(f"{labels_output} already exists")
paired_list = []
if label_list is not None:
for i in range(0, len(label_list), 2):
if not label_list[i].isdigit():
print(
"Wrong order of input argument for pair-wising label value and its name !!!")
return
else:
value = label_list[i]
if not label_list[i+1].isdigit():
key = label_list[i+1]
ele = tuple((key, value))
paired_list.append(ele)
else:
print(
"Wrong input argument for pair-wising label value and its name !!!")
return
# print(new_segmentation)
seg_output_path = checkSegFormat(
base, target_seg, paired_list, check=True)
else:
seg_output_path = checkSegFormat(
base, target_seg, paired_list, check=False)
for i in sorted(glob.glob(os.path.join(base, target_scan) + '/*' + target_fomat)):
id = os.path.basename(i).split('.')[0]
target = id
if id in label_lists:
split_and_registration(
template, target, base, template_path, target_scan, seg_output_path, images_output, labels_output, template_fomat, target_fomat, has_label=True)
else:
split_and_registration(
template, target, base, template_path, target_scan, seg_output_path, images_output, labels_output, template_fomat, target_fomat, has_label=False)
if __name__ == '__main__':
main() |