File size: 13,236 Bytes
c642393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
import nibabel as nib
import ants
import argparse
import pandas as pd
import glob
import os
import surface_distance
import nrrd
import shutil
import distanceVertex2Mesh
import textwrap


def parse_command_line():
    print('---'*10)
    print('Parsing Command Line Arguments')
    parser = argparse.ArgumentParser(
        description='Inference evaluation pipeline for image registration-segmentation', formatter_class=argparse.RawTextHelpFormatter)
    parser.add_argument('-bp', metavar='base path', type=str,
                        help="Absolute path of the base directory")
    parser.add_argument('-gp', metavar='ground truth path', type=str,
                        help="Relative path of the ground truth segmentation directory")
    parser.add_argument('-pp', metavar='predicted path', type=str,
                        help="Relative path of predicted segmentation directory")
    parser.add_argument('-sp', metavar='save path', type=str,
                        help="Relative path of CSV file directory to save, if not specify, default is base directory")
    parser.add_argument('-vt', metavar='validation type', type=str, nargs='+',
                        help=textwrap.dedent('''Validation type:
                dsc: Dice Score
                ahd: Average Hausdorff Distance
                whd: Weighted Hausdorff Distance
                        '''))
    parser.add_argument('-pm', metavar='probability map path', type=str,
                        help="Relative path of text file directory of probability map")
    parser.add_argument('-fn', metavar='file name', type=str,
                        help="name of output file")
    parser.add_argument('-reg', action='store_true',
                        help="check if the input files are registration predictions")
    parser.add_argument('-tp', metavar='type of segmentation', type=str,
                        help=textwrap.dedent('''Segmentation type:
                ET: Eustachian Tube
                NC: Nasal Cavity
                HT: Head Tumor
                        '''))
    parser.add_argument('-sl', metavar='segmentation information list', type=str, nargs='+',
                        help='a list of label name and corresponding value')
    parser.add_argument('-cp', metavar='current prefix of filenames', type=str,
                        help='current prefix of filenames')
    argv = parser.parse_args()
    return argv


def rename(prefix, filename):
    name = filename.split('.')[0][-3:]
    name = prefix + '_' + name
    return name

def dice_coefficient_and_hausdorff_distance(filename, img_np_pred, img_np_gt, num_classes, spacing, probability_map, dsc, ahd, whd, average_DSC, average_HD):
    df = pd.DataFrame()
    data_gt, bool_gt = make_one_hot(img_np_gt, num_classes)
    data_pred, bool_pred = make_one_hot(img_np_pred, num_classes)
    for i in range(1, num_classes):
        df1 = pd.DataFrame([[filename, i]], columns=[
            'File ID', 'Label Value'])
        if dsc:
            if data_pred[i].any():
                volume_sum = data_gt[i].sum() + data_pred[i].sum()
                if volume_sum == 0:
                    return np.NaN

                volume_intersect = (data_gt[i] & data_pred[i]).sum()
                dice = 2*volume_intersect / volume_sum
                df1['Dice Score'] = dice
                average_DSC[i-1] += dice
            else:
                dice = 0.0
                df1['Dice Score'] = dice
                average_DSC[i-1] += dice
        if ahd:
            if data_pred[i].any():
                avd = average_hausdorff_distance(bool_gt[i], bool_pred[i], spacing)
                df1['Average Hausdorff Distance'] = avd
                average_HD[i-1] += avd
            else:
                avd = np.nan
                df1['Average Hausdorff Distance'] = avd
                average_HD[i-1] += avd
        if whd:
            # wgd = weighted_hausdorff_distance(gt, pred, probability_map)
            # df1['Weighted Hausdorff Distance'] = wgd
            pass

        df = pd.concat([df, df1])
    return df, average_DSC, average_HD


def make_one_hot(img_np, num_classes):
    img_one_hot_dice = np.zeros(
        (num_classes, img_np.shape[0], img_np.shape[1], img_np.shape[2]), dtype=np.int8)
    img_one_hot_hd = np.zeros(
        (num_classes, img_np.shape[0], img_np.shape[1], img_np.shape[2]), dtype=bool)
    for i in range(num_classes):
        a = (img_np == i)
        img_one_hot_dice[i, :, :, :] = a
        img_one_hot_hd[i, :, :, :] = a

    return img_one_hot_dice, img_one_hot_hd


def average_hausdorff_distance(img_np_gt, img_np_pred, spacing):
    surf_distance = surface_distance.compute_surface_distances(
        img_np_gt, img_np_pred, spacing)
    gp, pg = surface_distance.compute_average_surface_distance(surf_distance)
    return (gp + pg) / 2


def checkSegFormat(base, segmentation, type, prefix=None):
    if type == 'gt':
        save_dir = os.path.join(base, 'gt_reformat_labels')
        path = segmentation
    else:
        save_dir = os.path.join(base, 'pred_reformat_labels')
        path = os.path.join(base, segmentation)
    try:
        os.mkdir(save_dir)
    except:
        print(f'{save_dir} already exists')

    for file in os.listdir(path):
        if type == 'gt':
            if prefix is not None:
                name = rename(prefix, file)
            else:
                name = file.split('.')[0]
        else:
            name = file.split('.')[0]

        if file.endswith('seg.nrrd'):
            ants_img = ants.image_read(os.path.join(path, file))
            header = nrrd.read_header(os.path.join(path, file))
            filename = os.path.join(save_dir, name + '.nii.gz')
            nrrd2nifti(ants_img, header, filename)
        elif file.endswith('nii'):
            image = ants.image_read(os.path.join(path, file))
            image.to_file(os.path.join(save_dir, name + '.nii.gz'))
        elif file.endswith('nii.gz'):
            shutil.copy(os.path.join(path, file), os.path.join(save_dir, name + '.nii.gz'))

    return save_dir


def nrrd2nifti(img, header, filename):
    img_as_np = img.view(single_components=True)
    data = convert_to_one_hot(img_as_np, header)
    foreground = np.max(data, axis=0)
    labelmap = np.multiply(np.argmax(data, axis=0) + 1,
                           foreground).astype('uint8')
    segmentation_img = ants.from_numpy(
        labelmap, origin=img.origin, spacing=img.spacing, direction=img.direction)
    print('-- Saving NII Segmentations')
    segmentation_img.to_file(filename)


def convert_to_one_hot(data, header, segment_indices=None):
    print('---'*10)
    print("converting to one hot")

    layer_values = get_layer_values(header)
    label_values = get_label_values(header)

    # Newer Slicer NRRD (compressed layers)
    if layer_values and label_values:

        assert len(layer_values) == len(label_values)
        if len(data.shape) == 3:
            x_dim, y_dim, z_dim = data.shape
        elif len(data.shape) == 4:
            x_dim, y_dim, z_dim = data.shape[1:]

        num_segments = len(layer_values)
        one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))

        if segment_indices is None:
            segment_indices = list(range(num_segments))

        elif isinstance(segment_indices, int):
            segment_indices = [segment_indices]

        elif not isinstance(segment_indices, list):
            print("incorrectly specified segment indices")
            return

        # Check if NRRD is composed of one layer 0
        if np.max(layer_values) == 0:
            for i, seg_idx in enumerate(segment_indices):
                layer = layer_values[seg_idx]
                label = label_values[seg_idx]
                one_hot[i] = 1*(data == label).astype(np.uint8)

        else:
            for i, seg_idx in enumerate(segment_indices):
                layer = layer_values[seg_idx]
                label = label_values[seg_idx]
                one_hot[i] = 1*(data[layer] == label).astype(np.uint8)

    # Binary labelmap
    elif len(data.shape) == 3:
        x_dim, y_dim, z_dim = data.shape
        num_segments = np.max(data)
        one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))

        if segment_indices is None:
            segment_indices = list(range(1, num_segments + 1))

        elif isinstance(segment_indices, int):
            segment_indices = [segment_indices]

        elif not isinstance(segment_indices, list):
            print("incorrectly specified segment indices")
            return

        for i, seg_idx in enumerate(segment_indices):
            one_hot[i] = 1*(data == seg_idx).astype(np.uint8)

    # Older Slicer NRRD (already one-hot)
    else:
        return data

    return one_hot


def get_layer_values(header):
    layer_values = []
    num_segments = len([key for key in header.keys() if "Layer" in key])
    for i in range(num_segments):
        layer_values.append(int(header['Segment{}_Layer'.format(i)]))
    return layer_values


def get_label_values(header):
    label_values = []
    num_segments = len([key for key in header.keys() if "LabelValue" in key])
    for i in range(num_segments):
        label_values.append(int(header['Segment{}_LabelValue'.format(i)]))
    return label_values


def main():
    args = parse_command_line()
    base = args.bp
    gt_path = args.gp
    pred_path = args.pp
    if args.sp is None:
        save_path = base
    else:
        save_path = args.sp
    validation_type = args.vt
    probability_map_path = args.pm
    filename = args.fn
    reg = args.reg
    seg_type = args.tp
    label_list = args.sl
    current_prefix = args.cp
    if probability_map_path is not None:
        probability_map = np.loadtxt(os.path.join(base, probability_map_path))
    else:
        probability_map = None
    dsc = False
    ahd = False
    whd = False
    for i in range(len(validation_type)):
        if validation_type[i] == 'dsc':
            dsc = True
        elif validation_type[i] == 'ahd':
            ahd = True
        elif validation_type[i] == 'whd':
            whd = True
        else:
            print('wrong validation type, please choose correct one !!!')
            return

    filepath = os.path.join(base, save_path, 'output_' + filename + '.csv')
    save_dir = os.path.join(base, save_path)
    gt_output_path = checkSegFormat(base, gt_path, 'gt', current_prefix)
    pred_output_path = checkSegFormat(base, pred_path, 'pred', current_prefix)
    try:
        os.mkdir(save_dir)
    except:
        print(f'{save_dir} already exists')
    
    try:
        os.mknod(filepath)
    except:
        print(f'{filepath} already exists')

    DSC = pd.DataFrame()
    file = glob.glob(os.path.join(base, gt_output_path) + '/*nii.gz')[0]
    seg_file = ants.image_read(file)
    num_class = np.unique(seg_file.numpy().ravel()).shape[0]
    average_DSC = np.zeros((num_class-1))
    average_HD = np.zeros((num_class-1))
    k = 0
    for i in glob.glob(os.path.join(base, pred_output_path) + '/*nii.gz'):
        k += 1
        pred_img = ants.image_read(i)
        pred_spacing = list(pred_img.spacing)
        if reg and seg_type == 'ET':
            file_name = os.path.basename(i).split('.')[0].split('_')[4] + '_' + os.path.basename(
                i).split('.')[0].split('_')[5] + '_' + os.path.basename(i).split('.')[0].split('_')[6]
            file_name1 = os.path.basename(i).split('.')[0]
        elif reg and seg_type == 'NC':
            file_name = os.path.basename(i).split(
                '.')[0].split('_')[3] + '_' + os.path.basename(i).split('.')[0].split('_')[4]
            file_name1 = os.path.basename(i).split('.')[0]
        elif reg and seg_type == 'HT':
            file_name = os.path.basename(i).split('.')[0].split('_')[2]
            file_name1 = os.path.basename(i).split('.')[0]
        else:
            file_name = os.path.basename(i).split('.')[0]
            file_name1 = os.path.basename(i).split('.')[0]
        gt_seg = os.path.join(base, gt_output_path, file_name + '.nii.gz')
        gt_img = ants.image_read(gt_seg)
        gt_spacing = list(gt_img.spacing)

        if gt_spacing != pred_spacing:
            print(
                "Spacing of prediction and ground_truth is not matched, please check again !!!")
            return

        ref = pred_img
        data_ref = ref.numpy()

        pred = gt_img
        data_pred = pred.numpy()

        num_class = len(np.unique(data_pred))
        ds, aver_DSC, aver_HD = dice_coefficient_and_hausdorff_distance(
            file_name1, data_ref, data_pred, num_class, pred_spacing, probability_map, dsc, ahd, whd, average_DSC, average_HD)
        DSC = pd.concat([DSC, ds])
        average_DSC = aver_DSC
        average_HD = aver_HD

    avg_DSC = average_DSC / k
    avg_HD = average_HD / k
    print(avg_DSC)
    with open(os.path.join(base, save_path, "metric.txt"), 'w') as f:
        f.write("Label Value  Label Name  Average Dice Score  Average Mean HD\n")
        for i in range(len(avg_DSC)):
            f.write(f'{str(i+1):^12}{str(label_list[2*i+1]):^12}{str(avg_DSC[i]):^20}{str(avg_HD[i]):^18}\n')
    DSC.to_csv(filepath)


if __name__ == '__main__':
    main()