File size: 13,236 Bytes
c642393 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import numpy as np
import nibabel as nib
import ants
import argparse
import pandas as pd
import glob
import os
import surface_distance
import nrrd
import shutil
import distanceVertex2Mesh
import textwrap
def parse_command_line():
print('---'*10)
print('Parsing Command Line Arguments')
parser = argparse.ArgumentParser(
description='Inference evaluation pipeline for image registration-segmentation', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('-bp', metavar='base path', type=str,
help="Absolute path of the base directory")
parser.add_argument('-gp', metavar='ground truth path', type=str,
help="Relative path of the ground truth segmentation directory")
parser.add_argument('-pp', metavar='predicted path', type=str,
help="Relative path of predicted segmentation directory")
parser.add_argument('-sp', metavar='save path', type=str,
help="Relative path of CSV file directory to save, if not specify, default is base directory")
parser.add_argument('-vt', metavar='validation type', type=str, nargs='+',
help=textwrap.dedent('''Validation type:
dsc: Dice Score
ahd: Average Hausdorff Distance
whd: Weighted Hausdorff Distance
'''))
parser.add_argument('-pm', metavar='probability map path', type=str,
help="Relative path of text file directory of probability map")
parser.add_argument('-fn', metavar='file name', type=str,
help="name of output file")
parser.add_argument('-reg', action='store_true',
help="check if the input files are registration predictions")
parser.add_argument('-tp', metavar='type of segmentation', type=str,
help=textwrap.dedent('''Segmentation type:
ET: Eustachian Tube
NC: Nasal Cavity
HT: Head Tumor
'''))
parser.add_argument('-sl', metavar='segmentation information list', type=str, nargs='+',
help='a list of label name and corresponding value')
parser.add_argument('-cp', metavar='current prefix of filenames', type=str,
help='current prefix of filenames')
argv = parser.parse_args()
return argv
def rename(prefix, filename):
name = filename.split('.')[0][-3:]
name = prefix + '_' + name
return name
def dice_coefficient_and_hausdorff_distance(filename, img_np_pred, img_np_gt, num_classes, spacing, probability_map, dsc, ahd, whd, average_DSC, average_HD):
df = pd.DataFrame()
data_gt, bool_gt = make_one_hot(img_np_gt, num_classes)
data_pred, bool_pred = make_one_hot(img_np_pred, num_classes)
for i in range(1, num_classes):
df1 = pd.DataFrame([[filename, i]], columns=[
'File ID', 'Label Value'])
if dsc:
if data_pred[i].any():
volume_sum = data_gt[i].sum() + data_pred[i].sum()
if volume_sum == 0:
return np.NaN
volume_intersect = (data_gt[i] & data_pred[i]).sum()
dice = 2*volume_intersect / volume_sum
df1['Dice Score'] = dice
average_DSC[i-1] += dice
else:
dice = 0.0
df1['Dice Score'] = dice
average_DSC[i-1] += dice
if ahd:
if data_pred[i].any():
avd = average_hausdorff_distance(bool_gt[i], bool_pred[i], spacing)
df1['Average Hausdorff Distance'] = avd
average_HD[i-1] += avd
else:
avd = np.nan
df1['Average Hausdorff Distance'] = avd
average_HD[i-1] += avd
if whd:
# wgd = weighted_hausdorff_distance(gt, pred, probability_map)
# df1['Weighted Hausdorff Distance'] = wgd
pass
df = pd.concat([df, df1])
return df, average_DSC, average_HD
def make_one_hot(img_np, num_classes):
img_one_hot_dice = np.zeros(
(num_classes, img_np.shape[0], img_np.shape[1], img_np.shape[2]), dtype=np.int8)
img_one_hot_hd = np.zeros(
(num_classes, img_np.shape[0], img_np.shape[1], img_np.shape[2]), dtype=bool)
for i in range(num_classes):
a = (img_np == i)
img_one_hot_dice[i, :, :, :] = a
img_one_hot_hd[i, :, :, :] = a
return img_one_hot_dice, img_one_hot_hd
def average_hausdorff_distance(img_np_gt, img_np_pred, spacing):
surf_distance = surface_distance.compute_surface_distances(
img_np_gt, img_np_pred, spacing)
gp, pg = surface_distance.compute_average_surface_distance(surf_distance)
return (gp + pg) / 2
def checkSegFormat(base, segmentation, type, prefix=None):
if type == 'gt':
save_dir = os.path.join(base, 'gt_reformat_labels')
path = segmentation
else:
save_dir = os.path.join(base, 'pred_reformat_labels')
path = os.path.join(base, segmentation)
try:
os.mkdir(save_dir)
except:
print(f'{save_dir} already exists')
for file in os.listdir(path):
if type == 'gt':
if prefix is not None:
name = rename(prefix, file)
else:
name = file.split('.')[0]
else:
name = file.split('.')[0]
if file.endswith('seg.nrrd'):
ants_img = ants.image_read(os.path.join(path, file))
header = nrrd.read_header(os.path.join(path, file))
filename = os.path.join(save_dir, name + '.nii.gz')
nrrd2nifti(ants_img, header, filename)
elif file.endswith('nii'):
image = ants.image_read(os.path.join(path, file))
image.to_file(os.path.join(save_dir, name + '.nii.gz'))
elif file.endswith('nii.gz'):
shutil.copy(os.path.join(path, file), os.path.join(save_dir, name + '.nii.gz'))
return save_dir
def nrrd2nifti(img, header, filename):
img_as_np = img.view(single_components=True)
data = convert_to_one_hot(img_as_np, header)
foreground = np.max(data, axis=0)
labelmap = np.multiply(np.argmax(data, axis=0) + 1,
foreground).astype('uint8')
segmentation_img = ants.from_numpy(
labelmap, origin=img.origin, spacing=img.spacing, direction=img.direction)
print('-- Saving NII Segmentations')
segmentation_img.to_file(filename)
def convert_to_one_hot(data, header, segment_indices=None):
print('---'*10)
print("converting to one hot")
layer_values = get_layer_values(header)
label_values = get_label_values(header)
# Newer Slicer NRRD (compressed layers)
if layer_values and label_values:
assert len(layer_values) == len(label_values)
if len(data.shape) == 3:
x_dim, y_dim, z_dim = data.shape
elif len(data.shape) == 4:
x_dim, y_dim, z_dim = data.shape[1:]
num_segments = len(layer_values)
one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))
if segment_indices is None:
segment_indices = list(range(num_segments))
elif isinstance(segment_indices, int):
segment_indices = [segment_indices]
elif not isinstance(segment_indices, list):
print("incorrectly specified segment indices")
return
# Check if NRRD is composed of one layer 0
if np.max(layer_values) == 0:
for i, seg_idx in enumerate(segment_indices):
layer = layer_values[seg_idx]
label = label_values[seg_idx]
one_hot[i] = 1*(data == label).astype(np.uint8)
else:
for i, seg_idx in enumerate(segment_indices):
layer = layer_values[seg_idx]
label = label_values[seg_idx]
one_hot[i] = 1*(data[layer] == label).astype(np.uint8)
# Binary labelmap
elif len(data.shape) == 3:
x_dim, y_dim, z_dim = data.shape
num_segments = np.max(data)
one_hot = np.zeros((num_segments, x_dim, y_dim, z_dim))
if segment_indices is None:
segment_indices = list(range(1, num_segments + 1))
elif isinstance(segment_indices, int):
segment_indices = [segment_indices]
elif not isinstance(segment_indices, list):
print("incorrectly specified segment indices")
return
for i, seg_idx in enumerate(segment_indices):
one_hot[i] = 1*(data == seg_idx).astype(np.uint8)
# Older Slicer NRRD (already one-hot)
else:
return data
return one_hot
def get_layer_values(header):
layer_values = []
num_segments = len([key for key in header.keys() if "Layer" in key])
for i in range(num_segments):
layer_values.append(int(header['Segment{}_Layer'.format(i)]))
return layer_values
def get_label_values(header):
label_values = []
num_segments = len([key for key in header.keys() if "LabelValue" in key])
for i in range(num_segments):
label_values.append(int(header['Segment{}_LabelValue'.format(i)]))
return label_values
def main():
args = parse_command_line()
base = args.bp
gt_path = args.gp
pred_path = args.pp
if args.sp is None:
save_path = base
else:
save_path = args.sp
validation_type = args.vt
probability_map_path = args.pm
filename = args.fn
reg = args.reg
seg_type = args.tp
label_list = args.sl
current_prefix = args.cp
if probability_map_path is not None:
probability_map = np.loadtxt(os.path.join(base, probability_map_path))
else:
probability_map = None
dsc = False
ahd = False
whd = False
for i in range(len(validation_type)):
if validation_type[i] == 'dsc':
dsc = True
elif validation_type[i] == 'ahd':
ahd = True
elif validation_type[i] == 'whd':
whd = True
else:
print('wrong validation type, please choose correct one !!!')
return
filepath = os.path.join(base, save_path, 'output_' + filename + '.csv')
save_dir = os.path.join(base, save_path)
gt_output_path = checkSegFormat(base, gt_path, 'gt', current_prefix)
pred_output_path = checkSegFormat(base, pred_path, 'pred', current_prefix)
try:
os.mkdir(save_dir)
except:
print(f'{save_dir} already exists')
try:
os.mknod(filepath)
except:
print(f'{filepath} already exists')
DSC = pd.DataFrame()
file = glob.glob(os.path.join(base, gt_output_path) + '/*nii.gz')[0]
seg_file = ants.image_read(file)
num_class = np.unique(seg_file.numpy().ravel()).shape[0]
average_DSC = np.zeros((num_class-1))
average_HD = np.zeros((num_class-1))
k = 0
for i in glob.glob(os.path.join(base, pred_output_path) + '/*nii.gz'):
k += 1
pred_img = ants.image_read(i)
pred_spacing = list(pred_img.spacing)
if reg and seg_type == 'ET':
file_name = os.path.basename(i).split('.')[0].split('_')[4] + '_' + os.path.basename(
i).split('.')[0].split('_')[5] + '_' + os.path.basename(i).split('.')[0].split('_')[6]
file_name1 = os.path.basename(i).split('.')[0]
elif reg and seg_type == 'NC':
file_name = os.path.basename(i).split(
'.')[0].split('_')[3] + '_' + os.path.basename(i).split('.')[0].split('_')[4]
file_name1 = os.path.basename(i).split('.')[0]
elif reg and seg_type == 'HT':
file_name = os.path.basename(i).split('.')[0].split('_')[2]
file_name1 = os.path.basename(i).split('.')[0]
else:
file_name = os.path.basename(i).split('.')[0]
file_name1 = os.path.basename(i).split('.')[0]
gt_seg = os.path.join(base, gt_output_path, file_name + '.nii.gz')
gt_img = ants.image_read(gt_seg)
gt_spacing = list(gt_img.spacing)
if gt_spacing != pred_spacing:
print(
"Spacing of prediction and ground_truth is not matched, please check again !!!")
return
ref = pred_img
data_ref = ref.numpy()
pred = gt_img
data_pred = pred.numpy()
num_class = len(np.unique(data_pred))
ds, aver_DSC, aver_HD = dice_coefficient_and_hausdorff_distance(
file_name1, data_ref, data_pred, num_class, pred_spacing, probability_map, dsc, ahd, whd, average_DSC, average_HD)
DSC = pd.concat([DSC, ds])
average_DSC = aver_DSC
average_HD = aver_HD
avg_DSC = average_DSC / k
avg_HD = average_HD / k
print(avg_DSC)
with open(os.path.join(base, save_path, "metric.txt"), 'w') as f:
f.write("Label Value Label Name Average Dice Score Average Mean HD\n")
for i in range(len(avg_DSC)):
f.write(f'{str(i+1):^12}{str(label_list[2*i+1]):^12}{str(avg_DSC[i]):^20}{str(avg_HD[i]):^18}\n')
DSC.to_csv(filepath)
if __name__ == '__main__':
main()
|