File size: 1,064 Bytes
c8d8767 3108df2 c8d8767 3108df2 33c6f26 3108df2 dd22ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
---
license: gpl-3.0
datasets:
- philschmid/sharegpt-raw
language:
- zh
- en
---
This is a Chinese instruction-tuning lora checkpoint based on llama-7B from [this repo's work](https://github.com/Facico/Chinese-Vicuna)
We use the 50k Chinese data, which is the combination of [alpaca_chinese_instruction_dataset](https://github.com/hikariming/alpaca_chinese_dataset.git) and the Chinese conversation data from sharegpt-90k data.
We finetune the model for 3 epochs use a single 4090 with ctxlen=2048.
You can use it like this:
```python
from transformers import LlamaForCausalLM
from peft import PeftModel
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
"Chinese-Vicuna/Chinese-Vicuna-lora-7b-chatv1"
torch_dtype=torch.float16,
device_map={'': 0}
)
```
We offer train-args and train-log in [here](https://huggingface.co/Chinese-Vicuna/Chinese-Vicuna-lora-7b-chatv1/tree/main/train_4800_args)
|