File size: 2,890 Bytes
3701d4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wikihow
metrics:
- rouge
model-index:
- name: t5-small-finetuned-wikihow_3epoch_b8_lr3e-4
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wikihow
type: wikihow
args: all
metrics:
- name: Rouge1
type: rouge
value: 27.3718
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-wikihow_3epoch_b8_lr3e-4
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3136
- Rouge1: 27.3718
- Rouge2: 10.6235
- Rougel: 23.3396
- Rougelsum: 26.6889
- Gen Len: 18.5194
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.8029 | 0.25 | 5000 | 2.5368 | 25.2267 | 8.9048 | 21.2588 | 24.5804 | 18.4303 |
| 2.6924 | 0.51 | 10000 | 2.4725 | 25.6553 | 9.1904 | 21.7633 | 24.9807 | 18.5549 |
| 2.6369 | 0.76 | 15000 | 2.4332 | 26.2895 | 9.7203 | 22.3286 | 25.6009 | 18.4185 |
| 2.5994 | 1.02 | 20000 | 2.4051 | 26.1779 | 9.5708 | 22.3531 | 25.5357 | 18.561 |
| 2.521 | 1.27 | 25000 | 2.3805 | 26.7558 | 10.0411 | 22.7252 | 26.0476 | 18.304 |
| 2.5091 | 1.53 | 30000 | 2.3625 | 26.6439 | 10.0698 | 22.6662 | 25.9537 | 18.5437 |
| 2.4941 | 1.78 | 35000 | 2.3498 | 26.9322 | 10.2817 | 23.0002 | 26.2604 | 18.4953 |
| 2.4848 | 2.03 | 40000 | 2.3424 | 27.0381 | 10.3452 | 22.9749 | 26.3407 | 18.5749 |
| 2.4268 | 2.29 | 45000 | 2.3272 | 27.2386 | 10.4595 | 23.1866 | 26.5541 | 18.4954 |
| 2.4263 | 2.54 | 50000 | 2.3226 | 27.1489 | 10.532 | 23.1428 | 26.4657 | 18.5583 |
| 2.4161 | 2.8 | 55000 | 2.3136 | 27.3718 | 10.6235 | 23.3396 | 26.6889 | 18.5194 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.0.0
- Tokenizers 0.11.6
|