File size: 13,386 Bytes
1e0ba38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function ActorCriticPolicy.__init__ at 0x7e23607256c0>",
        "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e2360725750>",
        "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e23607257e0>",
        "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e2360725870>",
        "_build": "<function ActorCriticPolicy._build at 0x7e2360725900>",
        "forward": "<function ActorCriticPolicy.forward at 0x7e2360725990>",
        "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e2360725a20>",
        "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e2360725ab0>",
        "_predict": "<function ActorCriticPolicy._predict at 0x7e2360725b40>",
        "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e2360725bd0>",
        "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e2360725c60>",
        "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e2360725cf0>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x7e23608baf00>"
    },
    "verbose": 1,
    "policy_kwargs": {},
    "num_timesteps": 1000448,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1714454911421051466,
    "learning_rate": 0.0003,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPX7D1E5UU+VPeQvuAiPr6074O8hhlMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": null,
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": -0.00044800000000000395,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVGwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG46ivxH5JuMAWyUS/GMAXSUR0CmNVhbnoxIdX2UKGgGR0Bvi7sMRYigaAdNKwFoCEdApjd/CVKPGXV9lChoBkdAMofJ/5LytmgHS9FoCEdApjhqy6cy33V9lChoBkdATktaY/mknGgHS8xoCEdApjlaoqCpWHV9lChoBkdAcSh5cC5mRWgHTQUBaAhHQKY6SrFOwgV1fZQoaAZHQG4TBNM495hoB00GAWgIR0CmO+lDF6zFdX2UKGgGR0BP0gTZg5R1aAdL4mgIR0CmPKLnDBM0dX2UKGgGR0BvqpC4SYgJaAdNAQFoCEdApj2GV7hNunV9lChoBkdAUbRkf9xZMmgHS9poCEdApj45yCFsYXV9lChoBkdAZP2ATZg5R2gHTegDaAhHQKZDIY2sJY11fZQoaAZHQG5l3solUqBoB00mAWgIR0CmRMAL7XQMdX2UKGgGR0BhCEpuuRs/aAdN6ANoCEdApkl+uNgjQnV9lChoBkdAZzA2QXAM2GgHTegDaAhHQKZODAP/aQF1fZQoaAZHQGxeSmIj4YdoB00cAWgIR0CmT1VS4vvjdX2UKGgGR0BxD7Mmnfl7aAdNHwFoCEdAplCg7FKkEnV9lChoBkdAYkEGs3hn8WgHTegDaAhHQKZVa0/nnuB1fZQoaAZHQG0SBpYcNpdoB0v7aAhHQKZWRciW3Sd1fZQoaAZHQHBWKvq1PWRoB00TAWgIR0CmV9kVnEl3dX2UKGgGR0Bx2SjN6gM+aAdNGQNoCEdApltWfukUK3V9lChoBkdAbz1alk6LfmgHTTMBaAhHQKZdUFEAo5R1fZQoaAZHQHDLSQT238ZoB00AAWgIR0CmXjDmKZUldX2UKGgGR0BxsI9kjHGTaAdL5GgIR0CmXui5uqFRdX2UKGgGR0Bxo4IldC3PaAdNEAFoCEdApl/U0SAYpHV9lChoBkdAcJ+wrDqGDmgHTRMBaAhHQKZhXRPXTVl1fZQoaAZHQHDNmIsRQJpoB00kAWgIR0CmYmP4VRDUdX2UKGgGR0BwsirvLHMmaAdNNwFoCEdApmN8svqTr3V9lChoBkdATsbL0SRKYmgHS8poCEdApmQrgflp5HV9lChoBkdAb+l09QoCuGgHS/FoCEdApmWK3PRiPXV9lChoBkdAco9+FDfFaWgHS/VoCEdApmalUlzEJnV9lChoBkdAcRFDB/I8yWgHS/FoCEdApmgJaNdZ73V9lChoBkdAWWEHkcS5AmgHTegDaAhHQKZtdKT0QK91fZQoaAZHQHFFhP9DQZ5oB0vsaAhHQKZuPAO8TSN1fZQoaAZHQHDjpy6tknVoB0vuaAhHQKZvq7Njbzt1fZQoaAZHQHIWWb5M10loB00oAWgIR0CmcKnh0hePdX2UKGgGR0Bws3nmq5skaAdNEgFoCEdApnGPa8Hv+nV9lChoBkdAZtQgAZKnN2gHTegDaAhHQKZ2bZgXuVp1fZQoaAZHQEYSXN1QqI9oB0vNaAhHQKZ3GPz4DcN1fZQoaAZHQG7RqwyIpH9oB00CAWgIR0CmeJg0sOG1dX2UKGgGR0ByKLnvDxb0aAdNJwFoCEdApnmNxffGdnV9lChoBkdAcoAs7uDzy2gHTSgBaAhHQKZ6miEg4fh1fZQoaAZHQHFgYA80UGpoB0vvaAhHQKZ7Ymnfl6t1fZQoaAZHQGwxSJj2BatoB03xAmgIR0Cmf9YYBNmEdX2UKGgGR0BxfTthNM4+aAdNHgFoCEdApoEYj4YaYXV9lChoBkdAbvKY2Kl54WgHTTMBaAhHQKaDKGyHEdh1fZQoaAZHQHEx/NzKcNJoB02DAWgIR0CmhJrjYI0JdX2UKGgGR0BxSVzCDVYqaAdNGgFoCEdApoWLEUCaJHV9lChoBkdAcAJdY4hllWgHTToDaAhHQKaJ8ee4Cp51fZQoaAZHQHJLyaJAMUhoB00LAWgIR0Cmiseo1k1/dX2UKGgGR0BwXQQ5FPSEaAdNMAFoCEdApoyAy44IbHV9lChoBkdAcgMzu4PPLWgHS+VoCEdApo1MpgCwKXV9lChoBkdAcWB4VARkE2gHTSgBaAhHQKaOTUUfxMF1fZQoaAZHQFP2EwnH/95oB0vJaAhHQKaO7X6InBt1fZQoaAZHQHG9TWsijcpoB00xAWgIR0CmkI+LvTgEdX2UKGgGR0BDHwdKdxyXaAdL4GgIR0CmkUpnQID6dX2UKGgGR0BuyZi3G4qgaAdNJAFoCEdAppJdAC4jKXV9lChoBkdAcAg3K0UoKGgHTRABaAhHQKaTc+Pikwh1fZQoaAZHQFDWgtvn8sNoB0vQaAhHQKaU1HvMKTl1fZQoaAZHQEOCdQwblzVoB0u6aAhHQKaVc8bJfY11fZQoaAZHQHKLhp5/smhoB00eAWgIR0CmltOxSpBHdX2UKGgGR0BQ+GjsUqQSaAdLz2gIR0Cml+mgJ1JUdX2UKGgGR0BxnO3mV7hOaAdNGwFoCEdAppoyZx7zCnV9lChoBkdATYw1k1/DtWgHS8doCEdAppsSqIacZ3V9lChoBkdAceiPJJXhfmgHTR4BaAhHQKacBdFfAsV1fZQoaAZHQHIRWdZq20BoB00lAWgIR0CmnPSfUWl/dX2UKGgGR0BzEy7kGRmsaAdNHQFoCEdApp6B7eEZi3V9lChoBkdAcbnH3Dej22gHTQkBaAhHQKafYuFpPAR1fZQoaAZHQEuD3pwCKaZoB0u8aAhHQKagBQKKHfx1fZQoaAZHQHGv4KQaJhxoB0v+aAhHQKag2b3oLXt1fZQoaAZHQHKV9c4YJmdoB00GAWgIR0CmolcqWkaddX2UKGgGR0Bx9TKEFnqWaAdNLgFoCEdApqNgbADaG3V9lChoBkdAcdZafzz3AWgHTUUBaAhHQKakdqC6H0t1fZQoaAZHQHE91VcUuctoB00IAWgIR0CmpVhK15SndX2UKGgGR0A6jmx+rlvIaAdLw2gIR0CmppbwrlNldX2UKGgGR0Bw9Q8eS0SiaAdL82gIR0Cmp3IToMa1dX2UKGgGR0BxqGT3Zf2LaAdL/WgIR0CmqFJZntfHdX2UKGgGR0BuJI4p+c6OaAdNGgFoCEdApqlIQpWmxnV9lChoBkdAQZdOdoWYW2gHS7poCEdApqp9xS5y2nV9lChoBkdAQHkgpz90imgHS7doCEdApqsRy2hIv3V9lChoBkdATBsbFS88LmgHS6poCEdApqulMIu5BnV9lChoBkdAcpd2h7E5yWgHS/BoCEdApqx1KK5083V9lChoBkdAQv70HyEtd2gHS9loCEdApq0luUD+znV9lChoBkdAbyimNR3u/mgHTSoBaAhHQKau1yRSxaB1fZQoaAZHQG2wwKBun/FoB0v+aAhHQKawAh6jWTZ1fZQoaAZHQE6CC7sfJV9oB0vYaAhHQKaw4EC/47B1fZQoaAZHQFCUbMotthxoB0vjaAhHQKax1svZh8Z1fZQoaAZHQHBns2WIGhVoB00BAWgIR0Cms6GoR7JGdX2UKGgGR0BxTHBInSfEaAdNIgFoCEdAprSUl7dBSnV9lChoBkdAcohLPUrkKmgHTSIBaAhHQKa1h5LRKHx1fZQoaAZHQBIZ1Ng0CRxoB0vQaAhHQKa2M+10DEF1fZQoaAZHQHCTQLmZE2JoB0vraAhHQKa3lMs6JZZ1fZQoaAZHQHApTiS7oStoB00QAWgIR0CmuHyeqaPTdX2UKGgGR0BuzVKmKqGUaAdNGQFoCEdAprlp1HOKO3V9lChoBkdAcVmR1oxpL2gHS/loCEdAprpJJTVDr3V9lChoBkdAUpxbRnezlmgHS91oCEdAprubjJdSl3V9lChoBkdAcjG8iOearmgHTQ0BaAhHQKa8fv99+gF1fZQoaAZHQHB2x4MWoFVoB00pAWgIR0CmvYCXhOxjdX2UKGgGR0Bx0y6TW5H3aAdL6mgIR0Cmvkg3kxREdX2UKGgGR0ByrMwVTJhfaAdNKwFoCEdApr/64J/oaHV9lChoBkdAb91GnXNC7mgHTZgBaAhHQKbBgw9q1w51fZQoaAZHQHBksynDR+loB0v7aAhHQKbCV4j8k2R1ZS4="
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 3908,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
        "dtype": "float32",
        "bounded_below": "[ True  True  True  True  True  True  True  True]",
        "bounded_above": "[ True  True  True  True  True  True  True  True]",
        "_shape": [
            8
        ],
        "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]",
        "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]",
        "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]",
        "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]",
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
        ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
        "n": "4",
        "start": "0",
        "_shape": [],
        "dtype": "int64",
        "_np_random": null
    },
    "n_envs": 1,
    "n_steps": 1024,
    "gamma": 0.999,
    "gae_lambda": 0.98,
    "ent_coef": 0.01,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "batch_size": 64,
    "n_epochs": 4,
    "clip_range": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    },
    "clip_range_vf": null,
    "normalize_advantage": true,
    "target_kl": null,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}