metadata
base_model: openai/whisper-base
datasets:
- fleurs
language:
- ar
license: apache-2.0
metrics:
- wer
tags:
- hf-asr-leaderboard
- generated_from_trainer
model-index:
- name: Whisper Base Arabic Punctuation 5k - Chee Li
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Google Fleurs
type: fleurs
config: ar_eg
split: None
args: 'config: ar split: test'
metrics:
- type: wer
value: 41.04421683737197
name: Wer
Whisper Base Arabic Punctuation 5k - Chee Li
This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 0.8131
- Wer: 41.0442
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1477 | 6.6667 | 1000 | 0.5514 | 41.2441 |
0.0074 | 13.3333 | 2000 | 0.6832 | 39.8951 |
0.0022 | 20.0 | 3000 | 0.7561 | 41.1441 |
0.0013 | 26.6667 | 4000 | 0.7972 | 40.8818 |
0.001 | 33.3333 | 5000 | 0.8131 | 41.0442 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1