CheeLi03's picture
Upload tokenizer
972d0e3 verified
metadata
base_model: openai/whisper-base
datasets:
  - fleurs
language:
  - ar
license: apache-2.0
metrics:
  - wer
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
model-index:
  - name: Whisper Base Arabic Punctuation 5k - Chee Li
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Google Fleurs
          type: fleurs
          config: ar_eg
          split: None
          args: 'config: ar split: test'
        metrics:
          - type: wer
            value: 41.04421683737197
            name: Wer

Whisper Base Arabic Punctuation 5k - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8131
  • Wer: 41.0442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1477 6.6667 1000 0.5514 41.2441
0.0074 13.3333 2000 0.6832 39.8951
0.0022 20.0 3000 0.7561 41.1441
0.0013 26.6667 4000 0.7972 40.8818
0.001 33.3333 5000 0.8131 41.0442

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1