--- base_model: openai/whisper-base datasets: - fleurs language: - ar license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Base Arabic Punctuation 5k - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: fleurs config: ar_eg split: None args: 'config: ar split: test' metrics: - type: wer value: 41.04421683737197 name: Wer --- # Whisper Base Arabic Punctuation 5k - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.8131 - Wer: 41.0442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1477 | 6.6667 | 1000 | 0.5514 | 41.2441 | | 0.0074 | 13.3333 | 2000 | 0.6832 | 39.8951 | | 0.0022 | 20.0 | 3000 | 0.7561 | 41.1441 | | 0.0013 | 26.6667 | 4000 | 0.7972 | 40.8818 | | 0.001 | 33.3333 | 5000 | 0.8131 | 41.0442 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1