File size: 5,860 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from torch import nn
from .modules import *
import pdb

class ConvLayer(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, padding, dilation):
        super(ConvLayer, self).__init__()
        self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation)
        self.relu = nn.ReLU()

    def forward(self, x):
        out = self.conv(x)
        out = self.relu(out)
        return out


class DilatedCNN(nn.Module):
    def __init__(self, d_model, d_hidden):
        super(DilatedCNN, self).__init__()
        self.first_ = nn.ModuleList()
        self.second_ = nn.ModuleList()
        self.third_ = nn.ModuleList()

        dilation_tuple = (1, 2, 3)
        dim_in_tuple = (d_model, d_hidden, d_hidden)
        dim_out_tuple = (d_hidden, d_hidden, d_hidden)

        for i, dilation_rate in enumerate(dilation_tuple):
            self.first_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=3, padding=dilation_rate,
                                         dilation=dilation_rate))

        for i, dilation_rate in enumerate(dilation_tuple):
            self.second_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=5, padding=2*dilation_rate,
                                          dilation=dilation_rate))

        for i, dilation_rate in enumerate(dilation_tuple):
            self.third_.append(ConvLayer(dim_in_tuple[i], dim_out_tuple[i], kernel_size=7, padding=3*dilation_rate,
                                         dilation=dilation_rate))

    def forward(self, protein_seq_enc):
        # pdb.set_trace()
        protein_seq_enc = protein_seq_enc.transpose(1, 2)    # protein_seq_enc's shape: B*L*d_model -> B*d_model*L

        first_embedding = protein_seq_enc
        second_embedding = protein_seq_enc
        third_embedding = protein_seq_enc

        for i in range(len(self.first_)):
            first_embedding = self.first_[i](first_embedding)

        for i in range(len(self.second_)):
            second_embedding = self.second_[i](second_embedding)

        for i in range(len(self.third_)):
            third_embedding = self.third_[i](third_embedding)

        # pdb.set_trace()

        protein_seq_enc = first_embedding + second_embedding + third_embedding

        return protein_seq_enc.transpose(1, 2)


class ReciprocalLayerwithCNN(nn.Module):

    def __init__(self, d_model, d_inner, d_hidden, n_head, d_k, d_v):
        super().__init__()

        self.cnn = DilatedCNN(d_model, d_hidden)

        self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden,
                                                                   d_k, d_v)

        self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_hidden,
                                                                  d_k, d_v)

        self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_hidden,
                                                                       d_k, d_v)

        self.ffn_seq = FFN(d_hidden, d_inner)

        self.ffn_protein = FFN(d_hidden, d_inner)

    def forward(self, sequence_enc, protein_seq_enc):
        # pdb.set_trace()  # protein_seq_enc.shape = B * L * d_model
        protein_seq_enc = self.cnn(protein_seq_enc)
        prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc)

        seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc)

        prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc,
                                                                                                    seq_enc,
                                                                                                    seq_enc,
                                                                                                    prot_enc)
        prot_enc = self.ffn_protein(prot_enc)

        seq_enc = self.ffn_seq(seq_enc)

        return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention


class ReciprocalLayer(nn.Module):

    def __init__(self, d_model, d_inner, n_head, d_k, d_v):
        
        super().__init__()
        
        self.sequence_attention_layer = MultiHeadAttentionSequence(n_head, d_model,
                                                                d_k, d_v)
        
        self.protein_attention_layer = MultiHeadAttentionSequence(n_head, d_model,
                                                               d_k, d_v)
        
        self.reciprocal_attention_layer = MultiHeadAttentionReciprocal(n_head, d_model,
                                                                           d_k, d_v)
        
        
        
        self.ffn_seq = FFN(d_model, d_inner)
        
        self.ffn_protein = FFN(d_model, d_inner)

    def forward(self, sequence_enc, protein_seq_enc):
        prot_enc, prot_attention = self.protein_attention_layer(protein_seq_enc, protein_seq_enc, protein_seq_enc)
        
        seq_enc, sequence_attention = self.sequence_attention_layer(sequence_enc, sequence_enc, sequence_enc)
        
        
        prot_enc, seq_enc, prot_seq_attention, seq_prot_attention = self.reciprocal_attention_layer(prot_enc,
                                                                                   seq_enc,
                                                                                   seq_enc,
                                                                                   prot_enc)
        prot_enc = self.ffn_protein(prot_enc)
        
        seq_enc = self.ffn_seq(seq_enc)
        
        
        
        return prot_enc, seq_enc, prot_attention, sequence_attention, prot_seq_attention, seq_prot_attention