File size: 60,347 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 |
"""Module for modeling discrete diffusion
(absorbing state or uniform) and AR
(a special case of absorbing state).
"""
import itertools
import math
import typing
from dataclasses import dataclass
import hydra.utils
import lightning as L
import numpy as np
import omegaconf
import torch
import torch.nn.functional as F
import torchmetrics
import transformers
from mamba_ssm.utils.generation import InferenceParams
from torch import Tensor
from tqdm.auto import tqdm
import pdb
import gc
import classifier
import dataloader
import models
import noise_schedule
LOG2 = math.log(2)
def _sample_categorical(categorical_probs):
gumbel_norm = (
1e-10
- (torch.rand_like(categorical_probs) + 1e-10).log()).to(categorical_probs.dtype)
return (categorical_probs / gumbel_norm).argmax(dim=-1)
def _unsqueeze(x, reference):
return x.view(
* x.shape,
* ((1,) * (len(reference.shape) - len(x.shape))))
@dataclass
class Loss:
loss: torch.FloatTensor
nlls: torch.FloatTensor
token_mask: torch.FloatTensor
recon_loss: typing.Optional[torch.FloatTensor] = None
diffusion_loss: typing.Optional[torch.FloatTensor] = None
class NLL(torchmetrics.aggregation.MeanMetric):
pass
class BPD(NLL):
def compute(self) -> Tensor:
"""Computes the bits per dimension.
Returns:
bpd
"""
return self.mean_value / self.weight / LOG2
class Perplexity(NLL):
def compute(self) -> Tensor:
"""Computes the Perplexity.
Returns:
Perplexity
"""
return torch.exp(self.mean_value / self.weight)
class Diffusion(L.LightningModule):
def __init__(
self,
config,
tokenizer: transformers.PreTrainedTokenizer):
super().__init__()
self.save_hyperparameters()
self.config = config
self.tokenizer = tokenizer
self.vocab_size = tokenizer.vocab_size
self.antithetic_sampling = config.training.antithetic_sampling
self.importance_sampling = config.training.importance_sampling
self.change_of_variables = config.training.change_of_variables
self.noise = noise_schedule.get_noise(config, dtype=self.dtype)
if self.config.is_vision:
self.mask_index = getattr(tokenizer, 'mask_token_id', -1)
else:
if (not hasattr(self.tokenizer, 'mask_token')
or tokenizer.mask_token is None):
self.mask_index = self.vocab_size
self.vocab_size += 1
else:
self.mask_index = tokenizer.mask_token_id
# Note: creating limiting distribution with
# broadcast-able batch and sequence dimensions.
self.parameterization = config.parameterization
self.diffusion = config.diffusion
if config.parameterization == 'ar':
self.limiting_distribution = None
else:
if self.diffusion == 'absorbing_state':
# Not needed, posterior calculated explicitly.
limiting_distribution = None
elif self.diffusion == 'uniform':
limiting_distribution = torch.ones(
(1, 1, self.vocab_size), dtype=self.dtype) / self.vocab_size
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
self.register_buffer('limiting_distribution',
limiting_distribution)
self.T = config.T
self.subs_masking = config.subs_masking
self.time_conditioning = config.time_conditioning
if self.config.backbone == 'dit':
self.backbone = models.dit.DIT(
self.config, vocab_size=self.vocab_size)
elif self.config.backbone == 'dimamba':
self.backbone = models.dimamba.DiMamba(
self.config, vocab_size=self.vocab_size,
pad_token_id=self.tokenizer.pad_token_id)
elif self.config.backbone == 'unet':
self.backbone = models.unet.UNet(
self.config, vocab_size=self.vocab_size)
elif self.config.backbone == 'hf_dit':
self.backbone = transformers.AutoModelForMaskedLM.from_pretrained(
config.model.pretrained_model_name_or_path, trust_remote_code=True)
else:
raise NotImplementedError(
f"Backbone {self.config.backbone} not implemented.")
self.lr = self.config.optim.lr
self.sampling_eps = config.training.sampling_eps
self.softplus = torch.nn.Softplus()
self.neg_infinity = -1_000_000.0
if config.training.ema > 0:
self.ema = models.ema.ExponentialMovingAverage(
itertools.chain(self.backbone.parameters(),
self.noise.parameters()),
decay=config.training.ema)
else:
self.ema = None
# metrics are automatically reset at end of epoch
metrics = torchmetrics.MetricCollection({
'nll': NLL(),
'bpd': BPD(),
'ppl': Perplexity(),
})
metrics.set_dtype(torch.float64)
self.train_metrics = metrics.clone(prefix='train/')
self.valid_metrics = metrics.clone(prefix='val/')
self.test_metrics = metrics.clone(prefix='test/')
self.fast_forward_epochs = None
self.fast_forward_batches = None
self._validate_configuration()
def _validate_configuration(self):
assert not (self.change_of_variables
and self.importance_sampling)
if self.diffusion != 'absorbing_state':
assert self.parameterization not in {'ar', 'subs'}
if self.T > 0:
assert self.parameterization in {'d3pm', 'subs'}
if self.subs_masking:
assert self.parameterization == 'd3pm'
def on_load_checkpoint(self, checkpoint):
if self.limiting_distribution is not None:
checkpoint['state_dict']['limiting_distribution'] = self.limiting_distribution.to(
list(checkpoint['state_dict'].values())[0].device)
if self.ema:
self.ema.load_state_dict(checkpoint['ema'])
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py#L41
self.fast_forward_epochs = checkpoint['loops'][
'fit_loop']['epoch_progress']['current']['completed']
self.fast_forward_batches = checkpoint['loops'][
'fit_loop']['epoch_loop.batch_progress'][
'current']['completed']
def on_save_checkpoint(self, checkpoint):
# Do not save this buffer
checkpoint['state_dict'].pop('limiting_distribution',
None)
if self.ema:
checkpoint['ema'] = self.ema.state_dict()
# Copied from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/tasks/seq.py
# ['epoch_loop.batch_progress']['total']['completed'] is
# 1 iteration behind, so we're using the optimizer's
# progress.
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['total'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total'][
'completed'] * self.trainer.accumulate_grad_batches
checkpoint['loops']['fit_loop'][
'epoch_loop.batch_progress']['current'][
'completed'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['current'][
'completed'] * self.trainer.accumulate_grad_batches
# _batches_that_stepped tracks the number of global
# steps, not the number of local steps, so we don't
# multiply with self.trainer.accumulate_grad_batches
# here.
checkpoint['loops']['fit_loop'][
'epoch_loop.state_dict'][
'_batches_that_stepped'] = checkpoint['loops']['fit_loop'][
'epoch_loop.automatic_optimization.optim_progress'][
'optimizer']['step']['total']['completed']
if 'sampler' not in checkpoint.keys():
checkpoint['sampler'] = {}
if hasattr(self.trainer.train_dataloader.sampler,
'state_dict'):
sampler_state_dict = self.trainer.\
train_dataloader.sampler.state_dict()
checkpoint['sampler'][
'random_state'] = sampler_state_dict.get(
'random_state', None)
else:
checkpoint['sampler']['random_state'] = None
def on_train_start(self):
if self.ema:
self.ema.move_shadow_params_to_device(self.device)
# Adapted from:
# https://github.com/Dao-AILab/flash-attention/blob/main/training/src/datamodules/language_modeling_hf.py
distributed = (
self.trainer._accelerator_connector.use_distributed_sampler
and self.trainer._accelerator_connector.is_distributed)
if distributed:
sampler_cls = dataloader.FaultTolerantDistributedSampler
else:
sampler_cls = dataloader.RandomFaultTolerantSampler
updated_dls = []
for dl in self.trainer.fit_loop._combined_loader.flattened:
if hasattr(dl.sampler, 'shuffle'):
dl_sampler = sampler_cls(
dl.dataset, shuffle=dl.sampler.shuffle)
else:
dl_sampler = sampler_cls(dl.dataset)
if (distributed
and self.fast_forward_epochs is not None
and self.fast_forward_batches is not None):
dl_sampler.load_state_dict({
'epoch': self.fast_forward_epochs,
'counter': (self.fast_forward_batches
* self.config.loader.batch_size)})
from functools import partial
from dataloader import collate_fn
collate_partial = partial(collate_fn)
torch.cuda.empty_cache()
updated_dls.append(
torch.utils.data.DataLoader(
dl.dataset,
# batch_size=self.config.loader.batch_size,
num_workers=self.config.loader.num_workers,
pin_memory=self.config.loader.pin_memory,
# sampler=dl_sampler,
shuffle=False,
persistent_workers=self.config.loader.persistent_workers,
collate_fn=collate_partial
))
self.trainer.fit_loop._combined_loader.flattened = updated_dls
def configure_optimizers(self):
# TODO(yair): Lightning currently giving this warning when using `fp16`:
# "Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
# Not clear if this is a problem or not.
# See: https://github.com/Lightning-AI/pytorch-lightning/issues/5558
optimizer = torch.optim.AdamW(
itertools.chain(self.backbone.parameters(),
self.noise.parameters()),
lr=self.config.optim.lr,
betas=(self.config.optim.beta1,
self.config.optim.beta2),
eps=self.config.optim.eps,
weight_decay=self.config.optim.weight_decay)
scheduler = hydra.utils.instantiate(
self.config.lr_scheduler, optimizer=optimizer)
scheduler_dict = {
'scheduler': scheduler,
'interval': 'step',
'monitor': 'val/loss',
'name': 'trainer/lr',
}
return [optimizer], [scheduler_dict]
def optimizer_step(self, *args, **kwargs):
super().optimizer_step(*args, **kwargs)
if self.ema:
self.ema.update(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
def _subs_parameterization(self, logits, xt):
# "Zero Masking Prob":
# log prob at the mask index = - infinity
logits[..., self.mask_index] += self.neg_infinity
# "Copy over":
# Apply updates directly in the logits matrix.
# For the logits of the unmasked tokens, set all values
# to -infinity except for the indices corresponding to
# the unmasked tokens.
unmasked_indices = (xt != self.mask_index)
logits[unmasked_indices] = self.neg_infinity
logits[unmasked_indices, xt[unmasked_indices]] = 0
# Normalize the logits such that x.exp() is
# a probability distribution over vocab_size.
return logits.log_softmax(dim=-1)
def _process_sigma(self, sigma):
if sigma is None:
assert self.parameterization == 'ar'
return sigma
if sigma.ndim > 1:
sigma = sigma.squeeze(-1)
if not self.time_conditioning:
sigma = torch.zeros_like(sigma)
assert sigma.ndim == 1, sigma.shape
return sigma
def forward(self, x, sigma, cond=None, x_emb=None, **kwargs):
"""Returns log_probs / logits."""
sigma = self._process_sigma(sigma)
with torch.cuda.amp.autocast(dtype=torch.float32):
logits = self.backbone(x, sigma, cond, x_emb=x_emb, **kwargs)
if self.parameterization == 'subs':
# returns log_probs
return self._subs_parameterization(
logits=logits, xt=x)
if self.parameterization in {'ar', 'd3pm'}:
# returns log_probs
if self.subs_masking: # Can use "zero masking prob"
logits[:, :, self.mask_index] += self.neg_infinity
return logits.log_softmax(dim=-1)
return logits
def _compute_posterior(self, x, xt, alpha_s, alpha_t):
"""Computes the posterior / approximate posterior.
Args:
x: Either clean input `x0` (one-hot),
or model's predicted `x_theta` of shape (B, L, V).
xt: The noisy latent (as indices) of shape (B, L).
alpha_s: Noise level at s of shape (B, [L | 1], 1).
alpha_t: Noise level at t of shape (B, [L | 1], 1).
Returns:
Posterior / approximate posterior of shape (B, L, V).
"""
alpha_ts = alpha_t / alpha_s
d_alpha = alpha_s - alpha_t
xt_one_hot = F.one_hot(xt, self.vocab_size)
if self.diffusion == 'uniform':
return (
(alpha_t * self.vocab_size * x * xt_one_hot +
(alpha_ts - alpha_t) * xt_one_hot +
d_alpha * x +
(1 - alpha_ts) * (1 - alpha_s) * self.limiting_distribution)
/
(alpha_t * self.vocab_size * torch.gather(x, -1, xt[..., None]) +
(1 - alpha_t))
)
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
def _d3pm_loss(self, model_output, xt, x0, t):
assert self.config.noise.type == 'loglinear', (
'D3PM loss only implemented for log-linear noise.')
dt = 1 / self.T
if torch.is_tensor(t):
t = t[:, None]
assert t.ndim == 2
t = t.clamp(0., 1. - 1e-4)
alpha_t = 1 - t + torch.zeros_like(xt)
alpha_s = 1 - (t - dt) + torch.zeros_like(xt)
if self.diffusion == 'absorbing_state':
log_x_theta_at_x0 = torch.gather(
model_output, -1, x0[:, :, None]).squeeze(-1)
log_x_theta_at_m = model_output[:, :, self.mask_index]
x_theta_at_m = log_x_theta_at_m.exp()
term_1_coef = dt / t
term_1_log_nr = torch.log(alpha_t * x_theta_at_m / t + 1)
term_1_log_dr = log_x_theta_at_x0
term_2_coef = 1 - dt / t
term_2_log_nr = term_1_log_nr
term_2_log_dr = torch.log(alpha_s * x_theta_at_m / (t - dt) + 1)
L_vb_masked = (
term_1_coef * (term_1_log_nr - term_1_log_dr)
+ term_2_coef * (term_2_log_nr - term_2_log_dr))
L_vb = L_vb_masked * (xt == self.mask_index)
elif self.diffusion == 'uniform':
posterior = self._compute_posterior(
x=F.one_hot(x0, num_classes=self.vocab_size).to(self.dtype),
xt=xt,
alpha_s=alpha_s[..., None],
alpha_t=alpha_t[..., None])
posterior_pred = self._compute_posterior(
x=model_output.exp(),
xt=xt,
alpha_s=alpha_s[..., None],
alpha_t=alpha_t[..., None])
L_vb = (
posterior * (torch.log(posterior + 1e-12) - torch.log(posterior_pred))
).sum(dim=-1)
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented for D3PM.")
return self.T * L_vb
def _reconstruction_loss(self, x0, cond=None):
# For D3PM parameterization
assert self.config.noise.type == 'loglinear', (
'Reconstruction loss only implemented for log-linear '
'noise.')
t0 = torch.zeros(x0.shape[0], dtype=self.dtype,
device=self.device)
time_conditioning = self.noise(t0)[0][:, None]
model_output_t0 = self.forward(x0, time_conditioning,
cond=cond)
return - torch.gather(input=model_output_t0,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
def _sample_t(self, n):
_eps_t = torch.rand(n, device=self.device)
if self.antithetic_sampling:
offset = torch.arange(n, device=self.device) / n
_eps_t = (_eps_t / n + offset) % 1
t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
if self.importance_sampling:
return self.noise.importance_sampling_transformation(
t)
return t
def _q_xt(self, x, move_chance):
"""Computes the noisy sample xt.
Args:
x: int torch.Tensor with shape (batch_size,
diffusion_model_input_length), input.
move_chance: float torch.Tensor with shape
(batch_size, 1).
"""
move_indices = torch.rand(
*x.shape, device=x.device) < move_chance
if self.diffusion == 'absorbing_state':
return torch.where(move_indices, self.mask_index, x)
if self.diffusion == 'uniform':
uniform_tensor = torch.randint(
0, self.vocab_size, x.shape, device=x.device)
return torch.where(move_indices, uniform_tensor, x)
elif self.diffusion == 'uniform_data_marginals':
return torch.where(
move_indices,
self._sample_prior(*x.shape),
x)
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
def _forward_pass_diffusion(self, x0, cond=None):
t = self._sample_t(x0.shape[0])
if self.T > 0:
t = (t * self.T).to(torch.int)
t = t / self.T
# t \in {1/T, 2/T, ..., 1}
t += (1 / self.T)
if self.change_of_variables:
time_conditioning = t[:, None]
f_T = torch.log1p(- torch.exp(- self.noise.sigma_max))
f_0 = torch.log1p(- torch.exp(- self.noise.sigma_min))
move_chance = torch.exp(f_0 + t * (f_T - f_0))
move_chance = move_chance[:, None]
sigma, dsigma = None, None
else:
sigma, dsigma = self.noise(t)
time_conditioning = sigma[:, None]
move_chance = 1 - torch.exp(-sigma[:, None])
xt = self._q_xt(x0, move_chance)
model_output = self.forward(xt, time_conditioning,
cond=cond)
# Discrete (finite T) time
if self.T > 0:
diffusion_loss = self._d3pm_loss(
model_output=model_output, xt=xt, x0=x0, t=t)
if self.parameterization == 'd3pm':
reconstruction_loss = self._reconstruction_loss(
x0, cond=cond)
if self.training and self.config.training.use_simple_ce_loss:
loss = -torch.gather(
input=model_output,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
else:
loss = reconstruction_loss + diffusion_loss
return {
'recon_loss': reconstruction_loss,
'diffusion_loss': diffusion_loss,
'loss': loss}
elif self.parameterization == 'subs':
if self.training and self.config.training.use_simple_ce_loss:
loss = -torch.gather(
input=model_output,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
else:
loss = diffusion_loss
return {'diffusion_loss': diffusion_loss, 'loss': loss}
else:
raise ValueError(
f"Invalid parameterization: {self.parameterization} for T > 0.")
# Continuous (T --> infty) time
if self.diffusion == 'absorbing_state':
# SUBS parameterization, continuous time.
log_p_theta = torch.gather(
input=model_output,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
if self.change_of_variables or self.importance_sampling:
if self.training and self.config.training.use_simple_ce_loss:
return {
'diffusion_loss': log_p_theta * torch.log1p(-torch.exp(- self.noise.sigma_min)),
'loss': -log_p_theta
}
return log_p_theta * torch.log1p(-torch.exp(- self.noise.sigma_min))
if self.training and self.config.training.use_simple_ce_loss:
return {
'diffusion_loss': log_p_theta * (dsigma / torch.expm1(sigma))[:, None],
'loss': log_p_theta
}
return - log_p_theta * (dsigma / torch.expm1(sigma))[:, None]
elif self.diffusion == 'uniform':
assert self.config.noise.type == 'loglinear', (
'Continuous time uniform diffusion only implemented'
' for log-linear noise.')
# TODO: Currently α_t' and α_t are hardcoded to a
# log-linear noise.
# Make generic (as above, for absorbing state):
# alpha_t_prime = -dsigma * (-sigma).exp()
# alpha_t = (-sigma).exp()
alpha_t_prime = -1.
alpha_t = 1. - t[..., None, None] # B, 1, 1
# x_bar = N * α_t * x + 1 - α_t ; B, L, V
x_bar = self.vocab_size * alpha_t * F.one_hot(x0, self.vocab_size).float() + 1 - alpha_t
x_bar_theta = self.vocab_size * alpha_t * model_output.exp() + 1 - alpha_t
# α_t' / (N*α_t)
coeff = alpha_t_prime / (self.vocab_size * alpha_t) # B, 1, 1
# Term 1: indices where z_t = 1
x_bar_zt = torch.gather(x_bar, -1, xt[..., None]) # B, L, 1
x_bar_theta_zt = torch.gather(x_bar_theta, -1, xt[..., None]) # B, L, 1
term1 = ((self.vocab_size / x_bar_zt) - (self.vocab_size / x_bar_theta_zt)) # B, L, 1
# Term 2: indices where z_t = 0
term2 = ( # B, L, V before summing --> B, L, 1 after
(x_bar / x_bar_zt) *
(
x_bar_theta_zt.log() - x_bar_theta.log() +
x_bar.log() - x_bar_zt.log()
)
)
term2 = term2.sum(dim=-1, keepdim=True) # B, L, 1
diffusion_loss = (coeff * (term1 - term2)).squeeze() # B, L
reconstruction_loss = self._reconstruction_loss(
x0, cond=cond)
if self.training and self.config.training.use_simple_ce_loss:
return {
'recon_loss': reconstruction_loss,
'diffusion_loss': diffusion_loss,
'loss': -torch.gather(
input=model_output,
dim=-1,
index=x0[:, :, None]).squeeze(-1)
}
return {
'recon_loss': reconstruction_loss,
'diffusion_loss': diffusion_loss,
'loss': diffusion_loss if getattr(self.config, 'zero_recon_loss', False)
else diffusion_loss + reconstruction_loss
}
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not "
"implemented for continuous time case.")
def _maybe_sub_sample(self, x0, attention_mask):
seqlen = x0.shape[1]
# if seqlen > self.config.model.length:
# assert seqlen == 2 * self.config.model.length
# # cropping is necessary for the text8-crop dataset;
# # try the same starting point for now
# start = np.random.choice(self.config.model.length)
# end = start + self.config.model.length
# input_tokens = x0[:, start: end]
# output_tokens = x0[:, start + 1: end + 1]
# new_attention_mask = attention_mask[:, start: end]
# # Helps with validation PPL, since the val
# # examples will all start and end with BOS/EOS
# input_tokens[:, 0] = self.tokenizer.bos_token_id
# output_tokens[:, -1] = self.tokenizer.eos_token_id
# elif self.parameterization == 'ar':
# input_tokens = x0[:, :-1]
# output_tokens = x0[:, 1:]
# new_attention_mask = attention_mask[:, 1:]
# else:
# input_tokens = x0
# output_tokens = None
# new_attention_mask = attention_mask
input_tokens = x0
output_tokens = None
new_attention_mask = attention_mask
return input_tokens, output_tokens, new_attention_mask
def _loss(self, x0, attention_mask, cond=None):
(input_tokens, output_tokens,
attention_mask) = self._maybe_sub_sample(
x0, attention_mask)
recon_loss, diffusion_loss = None, None
if (cond is not None and self.training
and self.config.training.guidance is not None
and self.config.training.guidance.cond_dropout > 0):
# Randomly mask out conditioning for classifier-free
# guidance training.
p = torch.bernoulli(
torch.ones_like(cond) *
self.config.training.guidance.cond_dropout).to(torch.bool)
# Use num_classes index as conditioning mask_token_id
cond[p] = self.config.data.num_classes
if self.parameterization == 'ar':
logprobs = self.forward(
input_tokens, sigma=None, cond=cond)
loss = - logprobs.gather(
-1, output_tokens[:, :, None])[:, :, 0]
else:
loss = self._forward_pass_diffusion(input_tokens,
cond=cond)
if isinstance(loss, dict):
recon_loss = loss['recon_loss']
diffusion_loss = loss['diffusion_loss']
loss = loss['loss']
nlls = loss * attention_mask
count = attention_mask.sum()
if (self.config.training.compute_loss_on_pad_tokens
and self.training):
token_nll = loss.mean()
else:
batch_nll = nlls.sum()
token_nll = batch_nll / count
if recon_loss is not None and diffusion_loss is not None:
with torch.no_grad():
recon_loss_batch = (recon_loss * attention_mask).sum() / count
diffusion_loss_batch = (diffusion_loss * attention_mask).sum() / count
return Loss(loss=token_nll,
nlls=nlls,
token_mask=attention_mask,
recon_loss=recon_loss_batch,
diffusion_loss=diffusion_loss_batch)
return Loss(loss=token_nll,
nlls=nlls,
token_mask=attention_mask)
def _compute_loss(self, batch, prefix):
if 'attention_mask' in batch:
attention_mask = batch['attention_mask']
else:
attention_mask = None
cond = None
if (self.config.training.guidance is not None or # Training for / using CFG
(hasattr(self.config, 'guidance')
and self.config.guidance is not None
and self.config.guidance.method == 'cfg')):
if self.config.data.label_col in batch:
cond = batch[self.config.data.label_col]
elif f"{self.config.data.label_col}_threshold" in batch:
cond = batch[f"{self.config.data.label_col}_threshold"]
else:
raise RuntimeError(
f"Conditioning {self.config.data.label_col}"
f" not found in batch.")
losses = self._loss(batch['input_ids'], attention_mask,
cond=cond)
if prefix == 'train':
self.train_metrics.update(losses.nlls,
losses.token_mask)
metrics = self.train_metrics
elif prefix == 'val':
self.valid_metrics.update(losses.nlls,
losses.token_mask)
metrics = self.valid_metrics
elif prefix == 'test':
self.test_metrics.update(losses.nlls,
losses.token_mask)
metrics = self.test_metrics
else:
raise ValueError(f"Invalid prefix: {prefix}")
self.log_dict(metrics,
on_step=False,
on_epoch=True,
sync_dist=True)
return losses
def training_step(self, batch, batch_idx):
losses = self._compute_loss(batch, prefix='train')
self.log(name='trainer/loss',
value=losses.loss.item(),
on_step=True,
on_epoch=True,
sync_dist=True,
prog_bar=True)
if losses.recon_loss is not None:
self.log(name='trainer/recon_loss',
value=losses.recon_loss.item(),
on_step=True,
on_epoch=True,
sync_dist=True,
prog_bar=False)
self.log(name='trainer/diffusion_loss',
value=losses.diffusion_loss.item(),
on_step=True,
on_epoch=True,
sync_dist=True,
prog_bar=False)
self.log(name='lr',
value=self.trainer.optimizers[0].param_groups[0]['lr'],
on_step=True,
on_epoch=False,
sync_dist=True,
prog_bar=True, logger=False)
return losses.loss
def validation_step(self, batch, batch_idx):
losses = self._compute_loss(batch, prefix='val')
self.log(name='trainer/val_loss',
value=losses.loss.item(),
on_step=True,
on_epoch=True,
prog_bar=True,
sync_dist=True)
return losses.loss
def load_ema_params(self):
if self.ema:
self.ema.store(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
self.ema.copy_to(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
def _restore_non_ema_params(self):
if self.ema:
self.ema.restore(itertools.chain(
self.backbone.parameters(),
self.noise.parameters()))
def on_validation_epoch_start(self):
# pdb.set_trace()
gc.collect()
torch.cuda.empty_cache()
self.load_ema_params()
assert self.valid_metrics.nll.mean_value == 0
assert self.valid_metrics.nll.weight == 0
def on_validation_epoch_end(self):
# pdb.set_trace()
# self._restore_non_ema_params()
# if (not self.trainer.sanity_checking
# and self.config.eval.generate_samples
# and self.trainer.global_rank == 0):
# self.config.sampling.batch_size = 1
# if self.config.is_vision:
# samples = []
# if self.config.training.guidance is not None:
# # Generate one image per class (up to 10 images)
# guidance = {
# 'method': 'cfg', 'condition': 0, 'gamma': 1.0}
# omegaconf.OmegaConf.update(
# self.config, key='guidance', value=guidance,
# force_add=True)
# for i in range(max(self.config.data.num_classes, 10)):
# self.config.guidance.condition = i
# samples.append(self.sample())
# else:
# # Generate ten images
# for i in range(10):
# samples.append(self.sample())
# image_samples = self.tokenizer.batch_decode(
# torch.concat(samples, dim=0))
# if hasattr(self.trainer.logger, 'log_image'):
# self.trainer.logger.log_image(
# key=f"samples@global_step{self.global_step}",
# caption=[str(i) for i in range(len(samples))],
# images=[s for s in image_samples.float()])
# else:
# if self.config.training.guidance is not None:
# guidance = {
# 'method': 'cfg', 'condition': 0, 'gamma': 1.0}
# omegaconf.OmegaConf.update(
# self.config, key='guidance', value=guidance,
# force_add=True)
# for i in range(self.config.data.num_classes):
# self.config.guidance.condition = i
# samples = self.sample()
# decoded_samples = self.tokenizer.batch_decode(
# samples)
# if hasattr(self.trainer.logger, 'log_table'):
# # Log some generated samples
# self.trainer.logger.log_table(
# key=f"samples@global_step{self.global_step}_class-{i}",
# columns=['Generated Samples'],
# data=[decoded_samples])
# else:
# self.config.sampling.batch_size = 2
# samples = self.sample()
# decoded_samples = self.tokenizer.batch_decode(
# samples)
# if hasattr(self.trainer.logger, 'log_table'):
# # Log some generated samples
# self.trainer.logger.log_table(
# key=f"samples@global_step{self.global_step}",
# columns=['Generated Samples'],
# data=[[s] for s in decoded_samples])
gc.collect()
torch.cuda.empty_cache()
self._restore_non_ema_params()
def _sample_prior(self, *batch_dims):
if self.diffusion == 'absorbing_state':
return self.mask_index * torch.ones(
*batch_dims, dtype=torch.int64, device=self.device)
if self.diffusion == 'uniform':
return torch.randint(
0, self.vocab_size, batch_dims, dtype=torch.int64,
device=self.device)
elif self.diffusion == 'uniform_data_marginals':
if self.limiting_distribution.squeeze().ndim == 2:
batch_dims = (batch_dims[0],)
return torch.distributions.Categorical(
self.limiting_distribution.squeeze()).sample(
sample_shape=torch.Size(batch_dims))
raise NotImplementedError(
f'Diffusion type {self.diffusion} not '
'implemented.')
def sample(
self,
eps=1e-5,
wt_embed: torch.tensor = None,
mut_embed: torch.tensor = None,
classifier_model = None): # Note: differs from self.config.training.sampling_eps
"""Generate samples from (ema) model.
Supports both AR and diffusion sampling.
Supports:
- standard decoding,
- classifier-free guidance,
- classifier-based guidance
- CBG / FUDGE,
- NOS / PPLM.
"""
# WARNING: Lightning auto-casting is not working in this method.
if not self.config.eval.disable_ema:
self.load_ema_params()
if getattr(self.config, 'guidance', None) is not None:
if self.config.guidance.method == 'cfg':
cond = (torch.ones(self.config.sampling.batch_size, device=self.device) *
self.config.guidance.condition).to(torch.long)
else:
cond = None
if ((self.parameterization == 'ar' and self.config.guidance.method in {'fudge', 'pplm'})
or self.config.guidance.method in {'cbg', 'nos'}):
if classifier_model is None:
classifier_model = classifier.Classifier.load_from_checkpoint(
self.config.guidance.classifier_checkpoint_path,
tokenizer=self.tokenizer,
config=self.config, logger=False)
classifier_model = classifier_model.to(self.device)
classifier_model.eval()
else:
classifier_model = None
else:
classifier_model, cond = None, None
if self.parameterization == 'ar':
samples = self._ar_sample(
classifier_model=classifier_model, cond=cond)
else: # Diffusion sampling
samples = self._diffusion_sample(
classifier_model=classifier_model, cond=cond,
eps=eps,
wt_embed = wt_embed.to(self.device),
mut_embed = mut_embed.to(self.device))
if not self.config.eval.disable_ema:
self._restore_non_ema_params()
return samples
@torch.no_grad()
def _ar_sample(
self,
classifier_model: typing.Optional[classifier.Classifier] = None,
cond: typing.Optional[torch.tensor] = None,
):
# precompute token buffer
num_pred_tokens = self.config.model.length - 1
x = torch.zeros(
(self.config.sampling.batch_size, num_pred_tokens + 1),
dtype=torch.long,
device=self.device)
x[:, 0] = self.tokenizer.bos_token_id
# precompute Gumbel sampling noise
if (getattr(self.config, 'guidance', None) is not None
and self.config.guidance.method == 'fudge'):
noise = torch.distributions.Gumbel(0, 1).sample(
(self.config.sampling.batch_size, # type: ignore
num_pred_tokens,
self.config.guidance.topk)).to(self.device)
else:
noise = torch.distributions.Gumbel(0, 1).sample(
(self.config.sampling.batch_size, # type: ignore
num_pred_tokens,
self.vocab_size)).to(self.device)
if self.config.sampling.use_float64:
noise = noise.to(torch.float64)
pbar = tqdm(range(num_pred_tokens), desc='AR Sampling',
leave=False)
inference_params = InferenceParams(
max_seqlen=num_pred_tokens,
max_batch_size=x.shape[0],
seqlen_offset=1)
# For cfg we do 2 forward passes, one for conditional
# model and one unconditional, so we need 2 copies of
# inference_params.
uncond_inference_params = InferenceParams(
max_seqlen=num_pred_tokens,
max_batch_size=x.shape[0],
seqlen_offset=1)
for i in pbar:
if getattr(self.config, 'guidance', None) is None:
if self.config.backbone == 'dimamba':
log_probs = self.forward(
x[:, i:i + 1], None, cond=None,
inference_params=inference_params)
else:
log_probs = self.forward(x[:, :i + 1],
None, cond=None)
if self.config.sampling.use_float64:
log_probs = log_probs.to(torch.float64)
next_log_probs = log_probs[:, -1]
y = (next_log_probs + noise[:, i]).argmax(-1)
else:
if self.config.guidance.method == 'cfg':
if self.config.backbone == 'dimamba':
next_log_probs = self._ar_cfg_denoise(
cond=cond,
gamma=self.config.guidance.gamma,
x=x[:, i:i + 1],
i=i,
inference_params=(inference_params, uncond_inference_params))
else:
next_log_probs = self._ar_cfg_denoise(
cond=cond,
gamma=self.config.guidance.gamma,
x=x,
i=i)
y = (next_log_probs + noise[:, i]).argmax(-1)
elif self.config.guidance.method == 'fudge':
if self.config.backbone == 'dimamba':
next_log_probs, top_indices = self._ar_fudge_denoise(
classifier_model=classifier_model,
guidance_cond=self.config.guidance.condition,
topk=self.config.guidance.topk,
gamma=self.config.guidance.gamma,
x=x[:, i:i + 1],
i=i,
inference_params=inference_params)
else:
next_log_probs, top_indices = self._ar_fudge_denoise(
classifier_model=classifier_model,
guidance_cond=self.config.guidance.condition,
topk=self.config.guidance.topk,
gamma=self.config.guidance.gamma,
x=x,
i=i)
y = torch.gather(
top_indices,
1,
(next_log_probs + noise[:, i]).argmax(-1).unsqueeze(1)
).squeeze(1)
elif self.config.guidance.method == 'pplm':
raise NotImplementedError
else:
raise NotImplementedError(
f"Guidance method {self.config.guidance.method} not implemented.")
pbar.set_postfix(
prob_check=(next_log_probs.exp().sum() / x.shape[0]).item(),
nan_check=bool(next_log_probs.isnan().sum() > 0))
x[:, i + 1] = y
return x
def _ar_cfg_denoise(
self,
cond: torch.tensor,
gamma: float,
x: torch.tensor,
i: int,
**kwargs
) -> torch.tensor:
if self.config.guidance.gamma == 0.0: # Sample unconditionally
mask_cond = (torch.ones_like(cond) *
self.config.data.num_classes)
if self.config.backbone == 'dimamba':
inference_params = kwargs.pop('inference_params')
log_probs = self.forward(
x[:, :i + 1],None, cond=mask_cond,
inference_params=inference_params[1])
else:
log_probs = self.forward(
x[:, :i + 1],None, cond=mask_cond, **kwargs)
elif gamma == 1.0: # Sample conditionally
if self.config.backbone == 'dimamba':
inference_params = kwargs.pop('inference_params')
log_probs = self.forward(
x[:, :i + 1], None, cond=cond,
inference_params=inference_params[0])
else:
log_probs = self.forward(
x[:, :i + 1], None, cond=cond, **kwargs)
else: # Sample from tempered distribution
mask_cond = (torch.ones_like(cond) *
self.config.data.num_classes)
if self.config.backbone == 'dimamba':
inference_params = kwargs.pop('inference_params')
log_probs_cond = self.forward(
x[:, :i + 1], None, cond=cond,
inference_params=inference_params[0])
log_probs_uncond = self.forward(
x[:, :i + 1],None, cond=mask_cond,
inference_params=inference_params[1])
else:
log_probs_cond = self.forward(
x[:, :i + 1], None, cond=cond, **kwargs)
log_probs_uncond = self.forward(
x[:, :i + 1],None, cond=mask_cond, **kwargs)
log_probs = gamma * log_probs_cond + (1 - gamma) * log_probs_uncond
# Gamma > 1.0 causes instability for Mamba, re-normalizing
log_probs = log_probs.log_softmax(dim=-1)
return log_probs[:, -1]
def _ar_fudge_denoise(
self,
classifier_model: classifier.Classifier,
guidance_cond: int,
topk: int,
gamma: float,
x: torch.tensor,
i: int,
**kwargs
) -> typing.Tuple[torch.tensor, torch.LongTensor]:
log_probs = self.forward(
x[:, :i + 1], None, cond=None, **kwargs)
next_log_probs = log_probs[:, -1]
top_logits, top_indices = next_log_probs.topk(topk, dim=-1)
t_candidates = torch.cat(
[x[:, :i + 1].unsqueeze(1).expand(-1, topk, -1),
top_indices.unsqueeze(2)],
dim=2).view(-1, i + 2) # (B * K), L
t = torch.zeros(t_candidates.shape[0],
device=self.device)
sigma, dsigma = self.noise(t)
time_conditioning = sigma[:, None]
classifier_log_prob = classifier_model.get_log_probs(
t_candidates, time_conditioning)
classifier_log_prob = classifier_log_prob[:, i + 1, :].view(
x.shape[0], topk, -1)[..., guidance_cond] # (batch, topk)
next_log_probs = (top_logits + gamma * classifier_log_prob).log_softmax(dim=-1)
return next_log_probs, top_indices
def _ar_pplm_denoise(
self,
classifier_model: classifier.Classifier,
guidance_cond: int,
num_ppl_steps: int,
pplm_step_size: float,
pplm_stability_coef: float,
x: torch.tensor,
i: int,
):
raise NotImplementedError
@torch.no_grad()
def _diffusion_sample(
self,
classifier_model: typing.Optional[classifier.Classifier] = None,
cond: typing.Optional[torch.tensor] = None,
eps: float = 1e-5, # Note: differs from self.config.training.sampling_eps
wt_embed: torch.tensor = None,
mut_embed: torch.tensor = None,
):
xt = self._sample_prior(
self.config.sampling.batch_size,
self.config.model.length
).to(self.device)
timesteps = torch.linspace(
1, eps, self.config.sampling.steps + 1, device=self.device)
dt = (1 - eps) / self.config.sampling.steps
pbar = tqdm(range(self.config.sampling.steps),
desc='Sampling',
leave=False)
NFEs = 0
cache = None
for i in pbar:
t = timesteps[i]
if self.T > 0: # t in {1/T,..., 1}, to match training
t = (t * self.T).to(torch.int)
t = t / self.T
t += (1 / self.T)
t = t * torch.ones(xt.shape[0], 1, device=self.device)
if cache is None:
NFEs += 1
sigma_t, _ = self.noise(t)
sigma_s, _ = self.noise(t - dt)
if sigma_t.ndim > 1:
sigma_t = sigma_t.squeeze(-1)
if sigma_s.ndim > 1:
sigma_s = sigma_s.squeeze(-1)
assert sigma_t.ndim == 1, sigma_t.shape
assert sigma_s.ndim == 1, sigma_s.shape
move_chance_t = 1 - torch.exp(-sigma_t)
move_chance_s = 1 - torch.exp(-sigma_s)
move_chance_t = move_chance_t[:, None, None]
move_chance_s = move_chance_s[:, None, None]
assert move_chance_t.ndim == 3, move_chance_t.shape
if getattr(self.config, 'guidance', None) is None:
xs, q_xs, cache = self._ddpm_denoise(
xt=xt,
time_conditioning=sigma_t,
move_chance_t=move_chance_t,
move_chance_s=move_chance_s,
cache=cache)
else:
if self.config.guidance.method == 'cfg':
xs, q_xs, cache = self._cfg_denoise(
cond=cond,
gamma=self.config.guidance.gamma,
xt=xt,
time_conditioning=sigma_t,
move_chance_t=move_chance_t,
move_chance_s=move_chance_s,
cache=cache)
elif self.config.guidance.method == 'cbg':
xs, q_xs, cache = self._cbg_denoise(
classifier_model=classifier_model,
conditioning_class=self.config.guidance.condition,
gamma=self.config.guidance.gamma,
use_approx=self.config.guidance.use_approx,
xt=xt,
time_conditioning=sigma_t,
move_chance_t=move_chance_t,
move_chance_s=move_chance_s,
wt_embed=wt_embed,
mut_embed=mut_embed,
cache=cache)
elif self.config.guidance.method == 'nos':
xs, q_xs, cache = self._nos_denoise(
classifier_model=classifier_model,
conditioning_class=self.config.guidance.condition,
num_nos_steps=self.config.guidance.num_nos_steps,
nos_step_size=self.config.guidance.nos_step_size,
nos_stability_coef=self.config.guidance.nos_stability_coef,
xt=xt,
time_conditioning=sigma_t,
move_chance_t=move_chance_t,
move_chance_s=move_chance_s)
else:
raise NotImplementedError(
f"Guidance method {self.config.guidance.method} not implemented.")
pbar.set_postfix(
NFEs=NFEs,
prob_check=(q_xs.sum() / xt.numel()).item(),
nan_check=bool(q_xs.isnan().sum() > 0))
if (not self.config.sampling.use_cache or
not torch.allclose(xs, xt)):
# Disable caching
cache = None
xt = xs
return xt
def _ddpm_denoise(
self,
xt: torch.tensor,
time_conditioning: torch.tensor,
move_chance_t: torch.tensor,
move_chance_s: torch.tensor,
cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None,
) -> typing.Tuple[torch.tensor, torch.tensor, typing.Dict[str, torch.tensor]]:
# Compute x_theta
if cache is not None:
log_x_theta = cache['log_x_theta']
else:
log_x_theta = self.forward(xt, time_conditioning,
cond=None)
if self.config.sampling.use_float64:
log_x_theta = log_x_theta.to(torch.float64)
x_theta = log_x_theta.exp()
# Compute posterior
if self.diffusion == 'absorbing_state':
q_xs = x_theta * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
q_xs /= move_chance_t
elif self.diffusion == 'uniform':
q_xs = self._compute_posterior(
x=x_theta,
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t)
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
# Sample from posterior
xs = _sample_categorical(q_xs)
if self.diffusion == 'absorbing_state':
copy_flag = (xt != self.mask_index).to(torch.bool)
q_xs[copy_flag] = 0.0
q_xs[copy_flag, xt[copy_flag]] = 1.0
xs = torch.where(copy_flag, xt, xs)
return xs, q_xs, {'log_x_theta': log_x_theta}
def _cfg_denoise(
self,
cond: torch.tensor,
gamma: float,
xt: torch.tensor,
time_conditioning: torch.tensor,
move_chance_t: torch.tensor,
move_chance_s: torch.tensor,
cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None,
) -> typing.Tuple[torch.tensor, torch.tensor, typing.Dict[str, torch.tensor]]:
# Compute log_x_theta
if cache is not None:
log_x_theta_uncond = cache['log_x_theta_uncond']
log_x_theta_cond = cache['log_x_theta_cond']
else:
if gamma == 0.0: # Sample unconditionally
mask_cond = (torch.ones_like(cond) *
self.config.data.num_classes)
log_x_theta_uncond = self.forward(
xt, time_conditioning, cond=mask_cond)
log_x_theta_cond = None
elif gamma == 1.0: # Sample conditionally
log_x_theta_cond = self.forward(xt, time_conditioning,
cond=cond)
log_x_theta_uncond = None
else: # Sample from tempered distribution
log_x_theta_cond = self.forward(xt, time_conditioning,
cond=cond)
mask_cond = (torch.ones_like(cond) *
self.config.data.num_classes)
log_x_theta_uncond = self.forward(xt,
time_conditioning,
cond=mask_cond)
# Compute (weighted) posterior
if (log_x_theta_cond is None # gamma == 0
or log_x_theta_uncond is None): # or gamma == 1
log_x_theta = log_x_theta_uncond if log_x_theta_uncond is not None else log_x_theta_cond
x_theta = log_x_theta.exp()
if self.diffusion == 'absorbing_state':
q_xs = x_theta * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
q_xs /= move_chance_t
elif self.diffusion == 'uniform':
q_xs = self._compute_posterior(
x=x_theta,
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t)
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
else: # gamma != 0 and gamma != 1
if self.diffusion == 'absorbing_state':
log_x_theta = (gamma * log_x_theta_cond + (1 - gamma) * log_x_theta_uncond)
x_theta = log_x_theta.softmax(dim=-1)
q_xs = x_theta * (move_chance_t - move_chance_s)
q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
q_xs /= move_chance_t
elif (self.diffusion == 'uniform'
or self.diffusion == 'uniform_data_marginals'):
log_q_xs_uncond = self._compute_posterior(
x=log_x_theta_uncond.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).log()
log_q_xs_cond = self._compute_posterior(
x=log_x_theta_cond.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).log()
log_q_xs = (gamma * log_q_xs_cond +
(1 - gamma) * log_q_xs_uncond)
q_xs = log_q_xs.softmax(dim=-1)
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
# Sample from posterior
xs = _sample_categorical(q_xs)
if self.diffusion == 'absorbing_state':
copy_flag = (xt != self.mask_index).to(torch.bool)
q_xs[copy_flag] = 0.0
q_xs[copy_flag, xt[copy_flag]] = 1.0
xs = torch.where(copy_flag, xt, xs)
return xs, q_xs, {'log_x_theta_uncond': log_x_theta_uncond,
'log_x_theta_cond': log_x_theta_cond}
def _cbg_denoise(
self,
conditioning_class: int,
gamma: float,
classifier_model: classifier.Classifier,
xt: torch.tensor,
time_conditioning: torch.tensor,
move_chance_t: torch.tensor,
move_chance_s: torch.tensor,
wt_embed: torch.tensor = None,
mut_embed: torch.tensor = None,
use_approx: bool = False, # whether to use first-order approximation
cache: typing.Optional[typing.Dict[str, torch.Tensor]] = None,
) -> typing.Tuple[torch.tensor, torch.tensor, typing.Dict[str, torch.tensor]]:
if cache is not None:
log_x_theta = cache['log_x_theta']
classifier_log_prob = cache['classifier_log_prob']
else:
# Diffusion model
log_x_theta = self.forward(xt, time_conditioning,
cond=None)
# Classifier model
if use_approx:
xt_one_hot = torch.nn.functional.one_hot(
xt, self.vocab_size).to(torch.float)
with torch.enable_grad():
xt_one_hot.requires_grad_(True)
classifier_log_prob_xt = classifier_model.get_log_probs(
xt_one_hot, time_conditioning)
classifier_log_prob_xt[..., conditioning_class].sum().backward()
grad_log_prob_xt = xt_one_hot.grad
classifier_log_prob_ratio = (
grad_log_prob_xt - (xt_one_hot * grad_log_prob_xt).sum(dim=-1, keepdim=True)
).detach().requires_grad_(False)
classifier_log_prob = (
classifier_log_prob_ratio +
classifier_log_prob_xt[..., conditioning_class][..., None, None]
).detach().requires_grad_(False)
else:
# Copied from https://github.com/hnisonoff/discrete_guidance/blob/main/src/fm_utils.py#L441
bsz, seq_len = xt.shape
# Create bsz*seq_len*N copies of input sequences
# Shape: (bsz, 1, seq_len) -> (bsz, seq_len*N, seq_len)
# (where N = vocab_size).
xt_expand = xt.unsqueeze(1).repeat(1, seq_len * self.vocab_size, 1)
# Flatten batch and transition dimensions
# Shape: (bsz, seq_len*N, seq_len) -> (bsz*seq_len*N, seq_len)
xt_expand = xt_expand.view(-1, seq_len)
# Create indices for all possible transitions
# Shape: (seq_len*N,) -> (bsz, seq_len*N) -> (bsz*seq_len*N,)
jump_idx = torch.arange(seq_len * self.vocab_size).to(xt.device)
jump_idx = jump_idx.repeat(bsz, 1).flatten()
# Create tensor for states after one transition
xt_jumps = xt_expand.clone()
# Calculate which dimension changes for each transition
# Shape: (bsz*seq_len*N,)
jump_dims = jump_idx // self.vocab_size
# Calculate new value for changed dimension
# Shape: (bsz*seq_len*N,)
jump_states = jump_idx % self.vocab_size
# Apply transitions by assigning new values at transition dimensions
# Shape: (bsz*seq_len*N, seq_len) -> N * (bsz*seq_len, seq_len)
xt_jumps[
torch.arange(jump_idx.size(0), device=xt.device),
jump_dims, # Index the transitioned dimension
] = jump_states # Assign the new state
# classifier_log_prob = (classifier_model.get_log_probs(
# xt_jumps, time_conditioning.repeat(seq_len * self.vocab_size)
# ))[..., conditioning_class].reshape(bsz, seq_len, self.vocab_size)
# xt_jumps shape (bsz*seq_len*N, seq_len) a batch of sequences
classifier_log_prob = classifier_model.get_log_probs(
xt_jumps, wt_embed.repeat(xt_jumps.shape[0], 1, 1), mut_embed.repeat(xt_jumps.shape[0], 1, 1)
)[:, 1].reshape(bsz, seq_len, self.vocab_size)
# pdb.set_trace()
# Compute unguided posterior
if self.diffusion == 'absorbing_state':
diffusion_log_probs = log_x_theta + torch.log(
1. - (move_chance_s / move_chance_t))
diffusion_log_probs[..., self.mask_index] = torch.log(
move_chance_s / move_chance_t)[:, :, 0]
diffusion_log_probs.detach()
elif self.diffusion == 'uniform':
diffusion_log_probs = self._compute_posterior(
x=log_x_theta.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).log()
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
# Apply guidance
with torch.no_grad():
if self.diffusion == 'absorbing_state':
guided_log_probs = (gamma * classifier_log_prob) + diffusion_log_probs
copy_flag = (xt != self.mask_index)
guided_log_probs[copy_flag] = self.neg_infinity
guided_log_probs[copy_flag, xt[copy_flag]] = 0.0
elif self.diffusion == 'uniform':
# pdb.set_trace()
guided_log_probs = (gamma * classifier_log_prob) + diffusion_log_probs
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
guided_probs = guided_log_probs.softmax(dim=-1)
# Sample from guided posterior
xs = _sample_categorical(guided_probs)
if self.diffusion == 'absorbing_state':
xs = torch.where(copy_flag.to(bool), xt, xs)
return xs, guided_probs, {'log_x_theta': log_x_theta,
'classifier_log_prob': classifier_log_prob}
def _nos_denoise(
self,
classifier_model: classifier.Classifier,
num_nos_steps: int,
nos_step_size: float,
nos_stability_coef: float,
conditioning_class: int,
xt: torch.Tensor,
time_conditioning: torch.tensor,
move_chance_t: torch.tensor,
move_chance_s: torch.tensor,
) -> typing.Tuple[torch.tensor, torch.tensor, None]:
# Compute original diffusion_log_probs and hidden states
copy_flag = (xt != self.mask_index).to(torch.bool)
with torch.no_grad():
time_conditioning = self._process_sigma(time_conditioning)
with torch.cuda.amp.autocast(dtype=torch.float32):
logits, hidden_states = self.backbone(
xt, time_conditioning, cond=None,
return_hidden_states=True)
if self.parameterization == 'subs':
log_x_theta = self._subs_parameterization(
logits=logits, xt=xt)
elif self.parameterization == 'd3pm':
# returns log_probs
if self.subs_masking: # Can use "zero masking prob"
logits[:, :,
self.mask_index] += self.neg_infinity
log_x_theta = logits.log_softmax(dim=-1)
else:
raise NotImplementedError(
f"Parameterization {self.parameterization} not implemented for NOS guidance.")
if self.diffusion == 'absorbing_state':
diffusion_log_probs = log_x_theta + torch.log(
1. - (move_chance_s / move_chance_t))
diffusion_log_probs[..., self.mask_index] = torch.log(
move_chance_s / move_chance_t)[:, :, 0]
diffusion_log_probs[copy_flag] = self.neg_infinity
diffusion_log_probs[copy_flag, xt[copy_flag]] = 0.0
elif self.diffusion == 'uniform':
diffusion_log_probs = self._compute_posterior(
x=log_x_theta.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).log()
# Perform NOS steps
kl_loss = torch.nn.KLDivLoss(reduction='batchmean',
log_target=True)
delta = torch.nn.Parameter(
torch.zeros_like(hidden_states[-1]),
requires_grad=True)
optimizer = torch.optim.Adagrad([delta], lr=nos_step_size)
with torch.enable_grad():
for _ in tqdm(range(num_nos_steps),
desc='NOS', leave=False):
h_current = hidden_states[-1] + delta
target_loss = classifier_model.get_log_probs(
xt, time_conditioning, x_emb=h_current)[..., conditioning_class].sum()
with torch.cuda.amp.autocast(dtype=torch.float32):
new_logits = self.forward(xt, time_conditioning,
cond=None,
x_emb=h_current)
if self.diffusion == 'absorbing_state':
adjusted_log_probs = new_logits + torch.log(
1. - (move_chance_s / move_chance_t))
adjusted_log_probs[
..., self.mask_index] = torch.log(
move_chance_s / move_chance_t)[:, :, 0]
adjusted_log_probs[
copy_flag] = self.neg_infinity
adjusted_log_probs[copy_flag, xt[copy_flag]] = 0.0
elif self.diffusion == 'uniform':
adjusted_log_probs = self._compute_posterior(
x=new_logits.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).log()
kl = kl_loss(adjusted_log_probs, diffusion_log_probs)
loss = -target_loss + nos_stability_coef * kl
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.cuda.amp.autocast(dtype=torch.float32):
guided_logits = self.forward(
xt, time_conditioning,
cond=None,
x_emb=hidden_states[-1] + delta.data)
if self.diffusion == 'absorbing_state':
diffusion_log_probs = guided_logits + torch.log(
1. - (move_chance_s / move_chance_t))
diffusion_log_probs[
..., self.mask_index] = torch.log(
move_chance_s / move_chance_t)[:, :, 0]
diffusion_log_probs.detach()
guided_probs = diffusion_log_probs.exp()
elif self.diffusion == 'uniform':
guided_probs = self._compute_posterior(
x=guided_logits.exp(),
xt=xt,
alpha_s=1 - move_chance_s,
alpha_t=1 - move_chance_t).detach()
else:
raise NotImplementedError(
f"Diffusion type {self.diffusion} not implemented.")
xs = _sample_categorical(guided_probs)
if self.diffusion == 'absorbing_state':
xs = torch.where(copy_flag, xt, xs)
return xs, guided_probs, None
|