File size: 12,700 Bytes
303c2e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import torch
import tempfile
import grelu
import pandas as pd
import os
from grelu.lightning import LightningModel
import grelu.data.preprocess
import grelu.data.dataset
import dataloader_gosai
import numpy as np
from typing import Callable, Union, List
from scipy.linalg import sqrtm
from scipy.stats import pearsonr
import torch.nn.functional as F
import io
base_path = "" # Fill in directory of the pretrained checkpoints, e.g., "...../data_and_model/"
def get_cal_atac_orale(device=None):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
ckpt_path = os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt')
ckpt = torch.load(ckpt_path, map_location="cpu")
hp = ckpt.get("hyper_parameters", {})
ckpt.setdefault("data_params", hp.get("data_params", {}))
ckpt.setdefault("performance", {})
if not ckpt["performance"]:
ckpt["performance"] = {
"best_step": ckpt.get("global_step", 0),
"best_metric": None,
}
# Load model from in-memory checkpoint (no file I/O needed)
buffer = io.BytesIO()
torch.save(ckpt, buffer)
buffer.seek(0) # Reset buffer position to the beginning
model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
model_load.to(device)
model_load.train_params['logger'] = None
return model_load
def get_gosai_oracle(mode='train', device=None):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
if mode == 'train':
ckpt_path = os.path.join(base_path, "mdlm/outputs_gosai/lightning_logs/reward_oracle_ft.ckpt")
ckpt = torch.load(ckpt_path, map_location="cpu")
hp = ckpt.get("hyper_parameters", {})
ckpt.setdefault("data_params", hp.get("data_params", {}))
ckpt.setdefault("performance", {})
if not ckpt["performance"]:
ckpt["performance"] = {
"best_step": ckpt.get("global_step", 0),
"best_metric": None,
}
# Load model from in-memory checkpoint (no file I/O needed)
buffer = io.BytesIO()
torch.save(ckpt, buffer)
buffer.seek(0) # Reset buffer position to the beginning
model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
model_load.to(device)
elif mode == 'eval':
ckpt_path = os.path.join(base_path, "mdlm/outputs_gosai/lightning_logs/reward_oracle_eval.ckpt")
ckpt = torch.load(ckpt_path, map_location="cpu")
hp = ckpt.get("hyper_parameters", {})
ckpt.setdefault("data_params", hp.get("data_params", {})) # safe default
ckpt.setdefault("performance", {}) # safe default
# Optional: add minimal hints if code later reads fields
if not ckpt["performance"]:
ckpt["performance"] = {
"best_step": ckpt.get("global_step", 0),
"best_metric": None,
}
# Load model from in-memory checkpoint (no file I/O needed)
buffer = io.BytesIO()
torch.save(ckpt, buffer)
buffer.seek(0) # Reset buffer position to the beginning
model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
model_load.to(device)
else:
raise ValueError
model_load.train_params['logger'] = None
return model_load
def cal_gosai_pred(seqs, model=None, mode='eval'):
"""
seqs: list of sequences (detokenized ACGT...)
"""
if model is None:
model = get_gosai_oracle(mode=mode)
df_seqs = pd.DataFrame(seqs, columns=['seq'])
pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
preds = model.predict_on_dataset(pred_dataset, devices=[0])
return preds.squeeze() # numpy array with shape [n_seqs, 3]
def cal_gosai_pred_new(seqs, model=None, mode='eval'):
"""
seqs: list of sequences (detokenized ACGT...)
"""
if model is None:
model = get_gosai_oracle(mode=mode)
model.eval()
tokens = dataloader_gosai.batch_dna_tokenize(seqs)
tokens = torch.tensor(tokens).long().to(model.device)
onehot_tokens = F.one_hot(tokens, num_classes=4).float()
preds = model(onehot_tokens.float().transpose(1, 2)).detach().cpu().numpy()
return preds.squeeze()
def cal_atac_pred(seqs, model=None):
"""
seqs: list of sequences (detokenized ACGT...)
"""
if model is None:
model = LightningModel.load_from_checkpoint(os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt'), map_location='cuda')
df_seqs = pd.DataFrame(seqs, columns=['seq'])
pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
preds = model.predict_on_dataset(pred_dataset, devices=[0])
return preds.squeeze() # numpy array with shape [n_seqs, 7]
def cal_atac_pred_new(seqs, model=None):
"""
seqs: list of sequences (detokenized ACGT...)
"""
if model is None:
model = LightningModel.load_from_checkpoint(os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt'), map_location='cuda')
model.eval()
tokens = dataloader_gosai.batch_dna_tokenize(seqs)
tokens = torch.tensor(tokens).long().to(model.device)
onehot_tokens = F.one_hot(tokens, num_classes=4).float()
preds = model(onehot_tokens.float().transpose(1, 2)).detach().cpu().numpy()
return preds.squeeze() # numpy array with shape [n_seqs, 7]
def count_kmers(seqs, k=3):
counts = {}
for seq in seqs:
for i in range(len(seq) - k + 1):
subseq = seq[i : i + k]
try:
counts[subseq] += 1
except KeyError:
counts[subseq] = 1
return counts
def subset_for_eval(n=5000, seed=0):
train_set = dataloader_gosai.get_datasets_gosai()
np.random.seed(seed)
torch.manual_seed(seed)
train_set_sp = torch.utils.data.Subset(train_set, np.random.choice(len(train_set), n, replace=False))
return train_set_sp
def subset_eval_groundtruth(sets_sp):
train_set_sp = sets_sp
train_set_sp_clss = train_set_sp.dataset.clss[train_set_sp.indices]
return train_set_sp_clss
def subset_eval_preds(sets_sp, oracle_model=None):
train_set_sp = sets_sp
train_preds = cal_gosai_pred(
dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
return train_preds
def subset_eval_kmers(sets_sp, k=3):
train_set_sp = sets_sp
train_seqs = dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy())
train_kmers = count_kmers(train_seqs, k)
return train_kmers
def subset_eval_embs(sets_sp, oracle_model=None):
train_set_sp = sets_sp
train_sp_emb = cal_gosai_emb(
dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
return train_sp_emb
def cal_emb_pca(sets_sp, n_components=50, oracle_model=None):
train_set_sp = sets_sp
train_sp_emb = cal_gosai_emb(
dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
from sklearn.decomposition import PCA
pca = PCA(n_components=n_components)
pca.fit(train_sp_emb.reshape(train_sp_emb.shape[0], -1))
return pca
def subset_eval_embs_pca(sets_sp, pca, oracle_model=None):
train_sp_emb = subset_eval_embs(sets_sp, oracle_model)
train_sp_emb_pca = pca.transform(train_sp_emb.reshape(train_sp_emb.shape[0], -1))
return train_sp_emb_pca
# https://github.com/HannesStark/dirichlet-flow-matching/blob/main/utils/flow_utils.py
def get_wasserstein_dist(embeds1, embeds2):
if np.isnan(embeds2).any() or np.isnan(embeds1).any() or len(embeds1) == 0 or len(embeds2) == 0:
return float('nan')
mu1, sigma1 = embeds1.mean(axis=0), np.cov(embeds1, rowvar=False)
mu2, sigma2 = embeds2.mean(axis=0), np.cov(embeds2, rowvar=False)
ssdiff = np.sum((mu1 - mu2) ** 2.0)
covmean = sqrtm(sigma1.dot(sigma2))
if np.iscomplexobj(covmean):
covmean = covmean.real
dist = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
return dist
def embed_on_dataset(
model,
dataset: Callable,
devices: Union[str, int, List[int]] = "cpu",
num_workers: int = 1,
batch_size: int = 256,
):
"""
Return embeddings for a dataset of sequences
Args:
dataset: Dataset object that yields one-hot encoded sequences
devices: Device IDs to use
num_workers: Number of workers for data loader
batch_size: Batch size for data loader
Returns:
Numpy array of shape (B, T, L) containing embeddings.
"""
torch.set_float32_matmul_precision("medium")
# Make dataloader
dataloader = model.make_predict_loader(
dataset, num_workers=num_workers, batch_size=batch_size
)
# Get device
orig_device = model.device
device = model.parse_devices(devices)[1]
if isinstance(device, list):
device = device[0]
model.to(device)
# Get embeddings
preds = []
model.model = model.model.eval()
for batch in iter(dataloader):
batch = batch.to(device)
preds.append(model.model.embedding(batch).detach().cpu())
# Return to original device
model.to(orig_device)
return torch.vstack(preds).numpy()
def cal_gosai_emb(seqs, model=None):
"""
seqs: list of sequences (detokenized ACGT...)
"""
if model is None:
model = get_gosai_oracle()
df_seqs = pd.DataFrame(seqs, columns=['seq'])
pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
embs = embed_on_dataset(model, pred_dataset, devices=[0])
return embs # numpy array with shape [n_seqs, 3072, 2]
def cal_highexp_kmers(k=3, return_clss=False):
train_set = dataloader_gosai.get_datasets_gosai()
exp_threshold = np.quantile(train_set.clss[:, 0].numpy(), 0.99) # 4.56
highexp_indices = [i for i, data in enumerate(train_set) if data['clss'][0] > exp_threshold]
highexp_set_sp = torch.utils.data.Subset(train_set, highexp_indices)
highexp_seqs = dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy())
highexp_kmers_99 = count_kmers(highexp_seqs, k=k)
n_highexp_kmers_99 = len(highexp_indices)
exp_threshold = np.quantile(train_set.clss[:, 0].numpy(), 0.999) # 6.27
highexp_indices = [i for i, data in enumerate(train_set) if data['clss'][0] > exp_threshold]
highexp_set_sp = torch.utils.data.Subset(train_set, highexp_indices)
highexp_seqs = dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy())
highexp_kmers_999 = count_kmers(highexp_seqs, k=k)
n_highexp_kmers_999 = len(highexp_indices)
if return_clss:
highexp_set_sp_clss_999 = highexp_set_sp.dataset.clss[highexp_set_sp.indices]
highexp_preds_999 = cal_gosai_pred_new(
dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy()))
return highexp_kmers_99, n_highexp_kmers_99, highexp_kmers_999, n_highexp_kmers_999, highexp_set_sp_clss_999, highexp_preds_999, highexp_seqs
return highexp_kmers_99, n_highexp_kmers_99, highexp_kmers_999, n_highexp_kmers_999
def cal_kmer_corr(model, highexp_kmers, n_highexp_kmers, n_sample=128):
model.eval()
all_detoeknized_samples = []
for _ in range(10):
samples = model._sample(eval_sp_size=n_sample).detach().cpu().numpy()
detokenized_samples = dataloader_gosai.batch_dna_detokenize(samples)
all_detoeknized_samples.extend(detokenized_samples)
generated_kmer = count_kmers(all_detoeknized_samples)
kmer_set = set(highexp_kmers.keys()) | set(generated_kmer.keys())
counts = np.zeros((len(kmer_set), 2))
for i, kmer in enumerate(kmer_set):
if kmer in highexp_kmers:
counts[i][1] = highexp_kmers[kmer] * len(generated_kmer) / n_highexp_kmers
if kmer in generated_kmer:
counts[i][0] = generated_kmer[kmer]
corr = pearsonr(counts[:, 0], counts[:, 1])[0]
return corr
def cal_avg_likelihood(model, old_model, n_sample=128):
model.eval()
old_model.eval()
all_raw_samples = []
for _ in range(10):
samples = model._sample(eval_sp_size=n_sample)
all_raw_samples.append(samples)
all_raw_samples = torch.concat(all_raw_samples)
avg_likelihood = old_model._forward_pass_diffusion(all_raw_samples).sum(-1).mean().item()
return avg_likelihood |