File size: 12,700 Bytes
303c2e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
import tempfile
import grelu
import pandas as pd
import os
from grelu.lightning import LightningModel
import grelu.data.preprocess
import grelu.data.dataset
import dataloader_gosai
import numpy as np
from typing import Callable, Union, List
from scipy.linalg import sqrtm
from scipy.stats import pearsonr
import torch.nn.functional as F
import io

base_path = "" # Fill in directory of the pretrained checkpoints, e.g., "...../data_and_model/"


def get_cal_atac_orale(device=None):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
    ckpt_path = os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt')

    ckpt = torch.load(ckpt_path, map_location="cpu")
    
    hp = ckpt.get("hyper_parameters", {})
    ckpt.setdefault("data_params", hp.get("data_params", {}))
    ckpt.setdefault("performance", {})

    if not ckpt["performance"]:
        ckpt["performance"] = {
            "best_step": ckpt.get("global_step", 0),
            "best_metric": None,
        }

    # Load model from in-memory checkpoint (no file I/O needed)
    buffer = io.BytesIO()
    torch.save(ckpt, buffer)
    buffer.seek(0)  # Reset buffer position to the beginning
    
    model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
    model_load.to(device)
    
    model_load.train_params['logger'] = None
    
    return model_load
    
    


def get_gosai_oracle(mode='train', device=None):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
    if mode == 'train':
        ckpt_path = os.path.join(base_path, "mdlm/outputs_gosai/lightning_logs/reward_oracle_ft.ckpt")

        ckpt = torch.load(ckpt_path, map_location="cpu")
        
        hp = ckpt.get("hyper_parameters", {})
        ckpt.setdefault("data_params", hp.get("data_params", {}))
        ckpt.setdefault("performance", {})

        if not ckpt["performance"]:
            ckpt["performance"] = {
                "best_step": ckpt.get("global_step", 0),
                "best_metric": None,
            }

        # Load model from in-memory checkpoint (no file I/O needed)
        buffer = io.BytesIO()
        torch.save(ckpt, buffer)
        buffer.seek(0)  # Reset buffer position to the beginning
        
        model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
        model_load.to(device)
        
    elif mode == 'eval':
        
        ckpt_path = os.path.join(base_path, "mdlm/outputs_gosai/lightning_logs/reward_oracle_eval.ckpt")
        ckpt = torch.load(ckpt_path, map_location="cpu")

        hp = ckpt.get("hyper_parameters", {})
        ckpt.setdefault("data_params", hp.get("data_params", {}))  # safe default
        ckpt.setdefault("performance", {})                         # safe default
        # Optional: add minimal hints if code later reads fields
        if not ckpt["performance"]:
            ckpt["performance"] = {
                "best_step": ckpt.get("global_step", 0),
                "best_metric": None,
            }
        
        # Load model from in-memory checkpoint (no file I/O needed)
        buffer = io.BytesIO()
        torch.save(ckpt, buffer)
        buffer.seek(0)  # Reset buffer position to the beginning
        
        model_load = LightningModel.load_from_checkpoint(buffer, map_location="cpu")
        model_load.to(device)
    else:
        raise ValueError
    
    model_load.train_params['logger'] = None
    
    return model_load

def cal_gosai_pred(seqs, model=None, mode='eval'):
    """
    seqs: list of sequences (detokenized ACGT...)
    """
    if model is None:
        model = get_gosai_oracle(mode=mode)
    df_seqs = pd.DataFrame(seqs, columns=['seq'])
    pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
    preds = model.predict_on_dataset(pred_dataset, devices=[0])
    return preds.squeeze() # numpy array with shape [n_seqs, 3]

def cal_gosai_pred_new(seqs, model=None, mode='eval'):
    """
    seqs: list of sequences (detokenized ACGT...)
    """
    if model is None:
        model = get_gosai_oracle(mode=mode)
    model.eval()
    tokens = dataloader_gosai.batch_dna_tokenize(seqs)
    tokens = torch.tensor(tokens).long().to(model.device)
    onehot_tokens = F.one_hot(tokens, num_classes=4).float()
    preds = model(onehot_tokens.float().transpose(1, 2)).detach().cpu().numpy()
    return preds.squeeze()

def cal_atac_pred(seqs, model=None):
    """
    seqs: list of sequences (detokenized ACGT...)
    """
    if model is None:
        model = LightningModel.load_from_checkpoint(os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt'), map_location='cuda')
    df_seqs = pd.DataFrame(seqs, columns=['seq'])
    pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
    preds = model.predict_on_dataset(pred_dataset, devices=[0])
    return preds.squeeze() # numpy array with shape [n_seqs, 7]


def cal_atac_pred_new(seqs, model=None):
    """
    seqs: list of sequences (detokenized ACGT...)
    """
    if model is None:
        model = LightningModel.load_from_checkpoint(os.path.join(base_path, 'mdlm/gosai_data/binary_atac_cell_lines.ckpt'), map_location='cuda')
    model.eval()
    tokens = dataloader_gosai.batch_dna_tokenize(seqs)
    tokens = torch.tensor(tokens).long().to(model.device)
    onehot_tokens = F.one_hot(tokens, num_classes=4).float()
    preds = model(onehot_tokens.float().transpose(1, 2)).detach().cpu().numpy()
    return preds.squeeze() # numpy array with shape [n_seqs, 7]


def count_kmers(seqs, k=3):
    counts = {}
    for seq in seqs:
        for i in range(len(seq) - k + 1):
            subseq = seq[i : i + k]
            try:
                counts[subseq] += 1
            except KeyError:
                counts[subseq] = 1
    return counts


def subset_for_eval(n=5000, seed=0):
    train_set = dataloader_gosai.get_datasets_gosai()
    np.random.seed(seed)
    torch.manual_seed(seed)
    train_set_sp = torch.utils.data.Subset(train_set, np.random.choice(len(train_set), n, replace=False))
    return train_set_sp 


def subset_eval_groundtruth(sets_sp):
    train_set_sp = sets_sp
    train_set_sp_clss = train_set_sp.dataset.clss[train_set_sp.indices]
    return train_set_sp_clss 


def subset_eval_preds(sets_sp, oracle_model=None):
    train_set_sp = sets_sp
    train_preds = cal_gosai_pred(
        dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
    return train_preds


def subset_eval_kmers(sets_sp, k=3):
    train_set_sp = sets_sp
    train_seqs = dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy())
    train_kmers = count_kmers(train_seqs, k)
    return train_kmers


def subset_eval_embs(sets_sp, oracle_model=None):
    train_set_sp = sets_sp
    train_sp_emb = cal_gosai_emb(
        dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
    return train_sp_emb 


def cal_emb_pca(sets_sp, n_components=50, oracle_model=None):
    train_set_sp = sets_sp
    train_sp_emb = cal_gosai_emb(
        dataloader_gosai.batch_dna_detokenize(train_set_sp.dataset.seqs[train_set_sp.indices].numpy()), oracle_model)
    from sklearn.decomposition import PCA
    pca = PCA(n_components=n_components)
    pca.fit(train_sp_emb.reshape(train_sp_emb.shape[0], -1))
    return pca


def subset_eval_embs_pca(sets_sp, pca, oracle_model=None):
    train_sp_emb = subset_eval_embs(sets_sp, oracle_model)
    train_sp_emb_pca = pca.transform(train_sp_emb.reshape(train_sp_emb.shape[0], -1))
    return train_sp_emb_pca 


# https://github.com/HannesStark/dirichlet-flow-matching/blob/main/utils/flow_utils.py
def get_wasserstein_dist(embeds1, embeds2):
    if np.isnan(embeds2).any() or np.isnan(embeds1).any() or len(embeds1) == 0 or len(embeds2) == 0:
        return float('nan')
    mu1, sigma1 = embeds1.mean(axis=0), np.cov(embeds1, rowvar=False)
    mu2, sigma2 = embeds2.mean(axis=0), np.cov(embeds2, rowvar=False)
    ssdiff = np.sum((mu1 - mu2) ** 2.0)
    covmean = sqrtm(sigma1.dot(sigma2))
    if np.iscomplexobj(covmean):
        covmean = covmean.real
    dist = ssdiff + np.trace(sigma1 + sigma2 - 2.0 * covmean)
    return dist


def embed_on_dataset(
    model,
    dataset: Callable,
    devices: Union[str, int, List[int]] = "cpu",
    num_workers: int = 1,
    batch_size: int = 256,
):
    """
    Return embeddings for a dataset of sequences

    Args:
        dataset: Dataset object that yields one-hot encoded sequences
        devices: Device IDs to use
        num_workers: Number of workers for data loader
        batch_size: Batch size for data loader

    Returns:
        Numpy array of shape (B, T, L) containing embeddings.
    """
    torch.set_float32_matmul_precision("medium")

    # Make dataloader
    dataloader = model.make_predict_loader(
        dataset, num_workers=num_workers, batch_size=batch_size
    )

    # Get device
    orig_device = model.device
    device = model.parse_devices(devices)[1]
    if isinstance(device, list):
        device = device[0]
    model.to(device)

    # Get embeddings
    preds = []
    model.model = model.model.eval()
    for batch in iter(dataloader):
        batch = batch.to(device)
        preds.append(model.model.embedding(batch).detach().cpu())

    # Return to original device
    model.to(orig_device)
    return torch.vstack(preds).numpy()


def cal_gosai_emb(seqs, model=None):
    """
    seqs: list of sequences (detokenized ACGT...)
    """
    if model is None:
        model = get_gosai_oracle()
    df_seqs = pd.DataFrame(seqs, columns=['seq'])
    pred_dataset = grelu.data.dataset.DFSeqDataset(df_seqs)
    embs = embed_on_dataset(model, pred_dataset, devices=[0])
    return embs # numpy array with shape [n_seqs, 3072, 2]


def cal_highexp_kmers(k=3, return_clss=False):
    train_set = dataloader_gosai.get_datasets_gosai()
    exp_threshold = np.quantile(train_set.clss[:, 0].numpy(), 0.99) # 4.56
    highexp_indices = [i for i, data in enumerate(train_set) if data['clss'][0] > exp_threshold]
    highexp_set_sp = torch.utils.data.Subset(train_set, highexp_indices)
    highexp_seqs = dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy())
    highexp_kmers_99 = count_kmers(highexp_seqs, k=k)
    n_highexp_kmers_99 = len(highexp_indices)

    exp_threshold = np.quantile(train_set.clss[:, 0].numpy(), 0.999) # 6.27
    highexp_indices = [i for i, data in enumerate(train_set) if data['clss'][0] > exp_threshold]
    highexp_set_sp = torch.utils.data.Subset(train_set, highexp_indices)
    highexp_seqs = dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy())
    highexp_kmers_999 = count_kmers(highexp_seqs, k=k)
    n_highexp_kmers_999 = len(highexp_indices)

    if return_clss:
        highexp_set_sp_clss_999 = highexp_set_sp.dataset.clss[highexp_set_sp.indices]
        highexp_preds_999 = cal_gosai_pred_new(
                dataloader_gosai.batch_dna_detokenize(highexp_set_sp.dataset.seqs[highexp_set_sp.indices].numpy()))
        return highexp_kmers_99, n_highexp_kmers_99, highexp_kmers_999, n_highexp_kmers_999, highexp_set_sp_clss_999, highexp_preds_999, highexp_seqs
    
    return highexp_kmers_99, n_highexp_kmers_99, highexp_kmers_999, n_highexp_kmers_999


def cal_kmer_corr(model, highexp_kmers, n_highexp_kmers, n_sample=128):
    model.eval()
    all_detoeknized_samples = []
    for _ in range(10):
        samples = model._sample(eval_sp_size=n_sample).detach().cpu().numpy()
        detokenized_samples = dataloader_gosai.batch_dna_detokenize(samples)
        all_detoeknized_samples.extend(detokenized_samples)
    generated_kmer = count_kmers(all_detoeknized_samples)


    kmer_set = set(highexp_kmers.keys()) | set(generated_kmer.keys())
    counts = np.zeros((len(kmer_set), 2))
    for i, kmer in enumerate(kmer_set):
        if kmer in highexp_kmers:
            counts[i][1] = highexp_kmers[kmer] * len(generated_kmer) / n_highexp_kmers
        if kmer in generated_kmer:
            counts[i][0] = generated_kmer[kmer]
    
    corr = pearsonr(counts[:, 0], counts[:, 1])[0]
    return corr

def cal_avg_likelihood(model, old_model, n_sample=128):
    model.eval()
    old_model.eval()
    all_raw_samples = []
    for _ in range(10):
        samples = model._sample(eval_sp_size=n_sample)
        all_raw_samples.append(samples)
    all_raw_samples = torch.concat(all_raw_samples)
    avg_likelihood = old_model._forward_pass_diffusion(all_raw_samples).sum(-1).mean().item()
    return avg_likelihood